/** @file mathop.h ** @brief Math operations ** @author Andrea Vedaldi, David Novotny **/ /* Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. All rights reserved. This file is part of the VLFeat library and is made available under the terms of the BSD license (see the COPYING file). */ #ifndef VL_MATHOP_H #define VL_MATHOP_H #include "generic.h" #include #include /** @brief Euler constant*/ #define VL_E 2.718281828459045 /** @brief Logarithm of 2 (math constant)*/ #define VL_LOG_OF_2 0.693147180559945 /** @brief Pi (math constant) */ #define VL_PI 3.141592653589793 /** @brief IEEE single precision epsilon (math constant) ** ** 1.0F + VL_EPSILON_F is the smallest representable ** single precision number greater than @c 1.0F. Numerically, ** ::VL_EPSILON_F is equal to @f$ 2^{-23} @f$. ** **/ #define VL_EPSILON_F 1.19209290E-07F /** @brief IEEE double precision epsilon (math constant) ** ** 1.0 + VL_EPSILON_D is the smallest representable ** double precision number greater than @c 1.0. Numerically, ** ::VL_EPSILON_D is equal to @f$ 2^{-52} @f$. **/ #define VL_EPSILON_D 2.220446049250313e-16 /* For the code below: An ANSI C compiler takes the two expressions, LONG_VAR and CHAR_VAR, and implicitly casts them to the type of the first member of the union. Refer to K&R Second Edition Page 148, last paragraph. */ /** @internal @brief IEEE single precision quiet NaN constant */ static union { vl_uint32 raw ; float value ; } const vl_nan_f = { 0x7FC00000UL } ; /** @internal @brief IEEE single precision infinity constant */ static union { vl_uint32 raw ; float value ; } const vl_infinity_f = { 0x7F800000UL } ; /** @internal @brief IEEE double precision quiet NaN constant */ static union { vl_uint64 raw ; double value ; } const vl_nan_d = #ifdef VL_COMPILER_MSC { 0x7FF8000000000000ui64 } ; #else { 0x7FF8000000000000ULL } ; #endif /** @internal @brief IEEE double precision infinity constant */ static union { vl_uint64 raw ; double value ; } const vl_infinity_d = #ifdef VL_COMPILER_MSC { 0x7FF0000000000000ui64 } ; #else { 0x7FF0000000000000ULL } ; #endif /** @brief IEEE single precision NaN (not signaling) */ #define VL_NAN_F (vl_nan_f.value) /** @brief IEEE single precision positive infinity (not signaling) */ #define VL_INFINITY_F (vl_infinity_f.value) /** @brief IEEE double precision NaN (not signaling) */ #define VL_NAN_D (vl_nan_d.value) /** @brief IEEE double precision positive infinity (not signaling) */ #define VL_INFINITY_D (vl_infinity_d.value) /* ---------------------------------------------------------------- */ /** @brief Fast mod(x, 2 * VL_PI) ** ** @param x input value. ** @return mod(x, 2 * VL_PI) ** ** The function is optimized for small absolute values of @a x. ** ** The result is guaranteed to be not smaller than 0. However, due to ** finite numerical precision and rounding errors, the result can be ** equal to 2 * VL_PI (for instance, if @c x is a very small negative ** number). **/ VL_INLINE float vl_mod_2pi_f (float x) { while (x > (float)(2 * VL_PI)) x -= (float) (2 * VL_PI) ; while (x < 0.0F) x += (float) (2 * VL_PI); return x ; } /** @brief Fast mod(x, 2 * VL_PI) ** @see vl_mod_2pi_f **/ VL_INLINE double vl_mod_2pi_d (double x) { while (x > 2.0 * VL_PI) x -= 2 * VL_PI ; while (x < 0.0) x += 2 * VL_PI ; return x ; } /** @brief Floor and convert to integer ** @param x argument. ** @return Similar to @c (int) floor(x) **/ VL_INLINE long int vl_floor_f (float x) { long int xi = (long int) x ; if (x >= 0 || (float) xi == x) return xi ; else return xi - 1 ; } /** @brief Floor and convert to integer ** @see vl_floor_f **/ VL_INLINE long int vl_floor_d (double x) { long int xi = (long int) x ; if (x >= 0 || (double) xi == x) return xi ; else return xi - 1 ; } /** @brief Ceil and convert to integer ** @param x argument. ** @return @c lceilf(x) **/ VL_INLINE long int vl_ceil_f (float x) { #ifdef VL_COMPILER_GNUC return (long int) __builtin_ceilf(x) ; #else return (long int) ceilf(x) ; #endif } /** @brief Ceil and convert to integer ** @see vl_ceil_f **/ VL_INLINE long int vl_ceil_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_ceil(x) ; #else return (long int) ceil(x) ; #endif } /** @brief Round ** @param x argument. ** @return @c lroundf(x) ** This function is either the same or similar to C99 @c lroundf(). **/ VL_INLINE long int vl_round_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_lroundf(x) ; #elif VL_COMPILER_MSC if (x >= 0.0F) { return vl_floor_f(x + 0.5F) ; } else { return vl_ceil_f(x - 0.5F) ; } #else return lroundf(x) ; #endif } /** @brief Round ** @param x argument. ** @return @c lround(x) ** This function is either the same or similar to C99 @c lround(). **/ VL_INLINE long int vl_round_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_lround(x) ; #elif VL_COMPILER_MSC if (x >= 0.0) { return vl_floor_d(x + 0.5) ; } else { return vl_ceil_d(x - 0.5) ; } #else return lround(x) ; #endif } /** @brief Fast @c abs(x) ** @param x argument. ** @return @c abs(x) **/ VL_INLINE float vl_abs_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_fabsf (x) ; #else return fabsf(x) ; #endif } /** @brief Fast @c abs(x) ** @sa vl_abs_f **/ VL_INLINE double vl_abs_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_fabs (x) ; #else return fabs(x) ; #endif } /** @brief Base-2 logaritghm ** @param x argument. ** @return @c log(x). **/ VL_INLINE double vl_log2_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_log2(x) ; #elif VL_COMPILER_MSC return log(x) / 0.693147180559945 ; #else return log2(x) ; #endif } /** @copydoc vl_log2_d */ VL_INLINE float vl_log2_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_log2f (x) ; #elif VL_COMPILER_MSC return logf(x) / 0.6931472F ; #else return log2(x) ; #endif } /** @brief Square root. ** @param x argument. ** @return @c sqrt(x). **/ VL_INLINE double vl_sqrt_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_sqrt(x) ; #else return sqrt(x) ; #endif } /** @copydoc vl_sqrt_d */ VL_INLINE float vl_sqrt_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_sqrtf(x) ; #else return sqrtf(x) ; #endif } /** @brief Check whether a floating point value is NaN ** @param x argument. ** @return true if @a x is NaN. **/ VL_INLINE vl_bool vl_is_nan_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_isnan (x) ; #elif VL_COMPILER_MSC return _isnan(x) ; #else return isnan(x) ; #endif } /** @copydoc vl_is_nan_f */ VL_INLINE vl_bool vl_is_nan_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_isnan (x) ; #elif VL_COMPILER_MSC return _isnan(x) ; #else return isnan(x) ; #endif } /** @brief Check whether a floating point value is infinity ** @param x argument. ** @return true if @a x is infinity. **/ VL_INLINE vl_bool vl_is_inf_f (float x) { #ifdef VL_COMPILER_GNUC return __builtin_isinf (x) ; #elif VL_COMPILER_MSC return ! _finite(x) ; #else return isinf(x) ; #endif } /** @copydoc vl_is_inf_f */ VL_INLINE vl_bool vl_is_inf_d (double x) { #ifdef VL_COMPILER_GNUC return __builtin_isinf (x) ; #elif VL_COMPILER_MSC return ! _finite(x) ; #else return isinf(x) ; #endif } /** ------------------------------------------------------------------ ** @brief Fast @c atan2 approximation ** @param y argument. ** @param x argument. ** ** The function computes a relatively rough but fast approximation of ** @c atan2(y,x). ** ** @par Algorithm ** ** The algorithm approximates the function @f$ f(r)=atan((1-r)/(1+r)) ** @f$, @f$ r \in [-1,1] @f$ with a third order polynomial @f$ ** f(r)=c_0 + c_1 r + c_2 r^2 + c_3 r^3 @f$. To fit the polynomial ** we impose the constraints ** ** @f{eqnarray*} ** f(+1) &=& c_0 + c_1 + c_2 + c_3 = atan(0) = 0,\\ ** f(-1) &=& c_0 - c_1 + c_2 - c_3 = atan(\infty) = \pi/2,\\ ** f(0) &=& c_0 = atan(1) = \pi/4. ** @f} ** ** The last degree of freedom is fixed by minimizing the @f$ ** l^{\infty} @f$ error, which yields ** ** @f[ ** c_0=\pi/4, \quad ** c_1=-0.9675, \quad ** c_2=0, \quad ** c_3=0.1821, ** @f] ** ** with maximum error of 0.0061 radians at 0.35 degrees. ** ** @return Approximation of @c atan2(y,x). **/ VL_INLINE float vl_fast_atan2_f (float y, float x) { float angle, r ; float const c3 = 0.1821F ; float const c1 = 0.9675F ; float abs_y = vl_abs_f (y) + VL_EPSILON_F ; if (x >= 0) { r = (x - abs_y) / (x + abs_y) ; angle = (float) (VL_PI / 4) ; } else { r = (x + abs_y) / (abs_y - x) ; angle = (float) (3 * VL_PI / 4) ; } angle += (c3*r*r - c1) * r ; return (y < 0) ? - angle : angle ; } /** @brief Fast @c atan2 approximation ** @sa vl_fast_atan2_f **/ VL_INLINE double vl_fast_atan2_d (double y, double x) { double angle, r ; double const c3 = 0.1821 ; double const c1 = 0.9675 ; double abs_y = vl_abs_d (y) + VL_EPSILON_D ; if (x >= 0) { r = (x - abs_y) / (x + abs_y) ; angle = VL_PI / 4 ; } else { r = (x + abs_y) / (abs_y - x) ; angle = 3 * VL_PI / 4 ; } angle += (c3*r*r - c1) * r ; return (y < 0) ? - angle : angle ; } /** ------------------------------------------------------------------ ** @brief Fast @c resqrt approximation ** @param x argument. ** @return approximation of @c resqrt(x). ** ** The function quickly computes an approximation of @f$ x^{-1/2} ** @f$. ** ** @par Algorithm ** ** The goal is to compute @f$ y = x^{-1/2} @f$, which we do by ** finding the solution of @f$ 0 = f(y) = y^{-2} - x @f$ by two Newton ** steps. Each Newton iteration is given by ** ** @f[ ** y \leftarrow ** y - \frac{f(y)}{\frac{df(y)}{dy}} = ** y + \frac{1}{2} (y-xy^3) = ** \frac{y}{2} \left( 3 - xy^2 \right) ** @f] ** ** which yields a simple polynomial update rule. ** ** The clever bit (attributed to either J. Carmack or G. Tarolli) is ** the way an initial guess @f$ y \approx x^{-1/2} @f$ is chosen. ** ** @see Inverse Sqare Root. ** **/ VL_INLINE float vl_fast_resqrt_f (float x) { /* 32-bit version */ union { float x ; vl_int32 i ; } u ; float xhalf = (float) 0.5 * x ; /* convert floating point value in RAW integer */ u.x = x ; /* gives initial guess y0 */ u.i = 0x5f3759df - (u.i >> 1); /*u.i = 0xdf59375f - (u.i>>1);*/ /* two Newton steps */ u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ; u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ; return u.x ; } /** @brief Fast @c resqrt approximation ** @sa vl_fast_resqrt_d **/ VL_INLINE double vl_fast_resqrt_d (double x) { /* 64-bit version */ union { double x ; vl_int64 i ; } u ; double xhalf = (double) 0.5 * x ; /* convert floating point value in RAW integer */ u.x = x ; /* gives initial guess y0 */ #ifdef VL_COMPILER_MSC u.i = 0x5fe6ec85e7de30dai64 - (u.i >> 1) ; #else u.i = 0x5fe6ec85e7de30daLL - (u.i >> 1) ; #endif /* two Newton steps */ u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ; u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ; return u.x ; } /** ------------------------------------------------------------------ ** @brief Fast @c sqrt approximation ** @param x argument. ** @return approximation of @c sqrt(x). ** ** The function computes a cheap approximation of @c sqrt(x). ** ** @par Floating-point algorithm ** ** For the floating point cases, the function uses ::vl_fast_resqrt_f ** (or ::vl_fast_resqrt_d) to compute x * ** vl_fast_resqrt_f(x). ** ** @par Integer algorithm ** ** We seek for the largest integer @e y such that @f$ y^2 \leq x @f$. ** Write @f$ y = w + b_k 2^k + z @f$ where the binary expansion of the ** various variable is ** ** @f[ ** x = \sum_{i=0}^{n-1} 2^i a_i, \qquad ** w = \sum_{i=k+1}^{m-1} 2^i b_i, \qquad ** z = \sum_{i=0}^{k-1} 2^i b_i. ** @f] ** ** Assume @e w known. Expanding the square and using the fact that ** @f$ b_k^2=b_k @f$, we obtain the following constraint for @f$ b_k ** @f$ and @e z: ** ** @f[ ** x - w^2 \geq 2^k ( 2 w + 2^k ) b_k + z (z + 2wz + 2^{k+1}z b_k) ** @f] ** ** A necessary condition for @f$ b_k = 1 @f$ is that this equation is ** satisfied for @f$ z = 0 @f$ (as the second term is always ** non-negative). In fact, this condition is also sufficient, since ** we are looking for the @e largest solution @e y. ** ** This yields the following iterative algorithm. First, note that if ** @e x is stored in @e n bits, where @e n is even, then the integer ** square root does not require more than @f$ m = n / 2 @f$ bit to be ** stored. Thus initially, @f$ w = 0 @f$ and @f$ k = m - 1 = n/2 - 1 ** @f$. Then, at each iteration the equation is tested, determining ** @f$ b_{m-1}, b_{m-2}, ... @f$ in this order. **/ VL_INLINE float vl_fast_sqrt_f (float x) { return (x < 1e-8) ? 0 : x * vl_fast_resqrt_f (x) ; } /** @brief Fast @c sqrt approximation ** @sa vl_fast_sqrt_f **/ VL_INLINE double vl_fast_sqrt_d (float x) { return (x < 1e-8) ? 0 : x * vl_fast_resqrt_d (x) ; } /** @brief Fast @c sqrt approximation ** @sa vl_fast_sqrt_f **/ VL_INLINE vl_uint32 vl_fast_sqrt_ui32 (vl_uint32 x) ; /** @brief Fast @c sqrt approximation ** @sa vl_fast_sqrt_f **/ VL_INLINE vl_uint16 vl_fast_sqrt_ui16 (vl_uint16 x) ; /** @brief Fast @c sqrt approximation ** @sa vl_fast_sqrt_f **/ VL_INLINE vl_uint8 vl_fast_sqrt_ui8 (vl_uint8 x) ; #define VL_FAST_SQRT_UI(T,SFX) \ VL_INLINE T \ vl_fast_sqrt_ ## SFX (T x) \ { \ T y = 0 ; /* w / 2^k */ \ T tmp = 0 ; \ int twok ; \ \ for (twok = 8 * sizeof(T) - 2 ; \ twok >= 0 ; twok -= 2) { \ y <<= 1 ; /* y = 2 * y */ \ tmp = (2*y + 1) << twok ; \ if (x >= tmp) { \ x -= tmp ; \ y += 1 ; \ } \ } \ return y ; \ } VL_FAST_SQRT_UI(vl_uint32,ui32) VL_FAST_SQRT_UI(vl_uint16,ui16) VL_FAST_SQRT_UI(vl_uint8,ui8) /* ---------------------------------------------------------------- */ /* Vector distances and similarities */ /* ---------------------------------------------------------------- */ /** @typedef VlFloatVectorComparisonFunction ** @brief Pointer to a function to compare vectors of floats **/ typedef float (*VlFloatVectorComparisonFunction)(vl_size dimension, float const * X, float const * Y) ; /** @typedef VlDoubleVectorComparisonFunction ** @brief Pointer to a function to compare vectors of doubles **/ typedef double (*VlDoubleVectorComparisonFunction)(vl_size dimension, double const * X, double const * Y) ; /** @typedef VlFloatVector3ComparisonFunction ** @brief Pointer to a function to compare 3 vectors of doubles **/ typedef float (*VlFloatVector3ComparisonFunction)(vl_size dimension, float const * X, float const * Y, float const * Z) ; /** @typedef VlDoubleVector3ComparisonFunction ** @brief Pointer to a function to compare 3 vectors of doubles **/ typedef double (*VlDoubleVector3ComparisonFunction)(vl_size dimension, double const * X, double const * Y, double const * Z) ; /** @brief Vector comparison types */ enum _VlVectorComparisonType { VlDistanceL1, /**< l1 distance (squared intersection metric) */ VlDistanceL2, /**< squared l2 distance */ VlDistanceChi2, /**< squared Chi2 distance */ VlDistanceHellinger, /**< squared Hellinger's distance */ VlDistanceJS, /**< squared Jensen-Shannon distance */ VlDistanceMahalanobis, /**< squared mahalanobis distance */ VlKernelL1, /**< intersection kernel */ VlKernelL2, /**< l2 kernel */ VlKernelChi2, /**< Chi2 kernel */ VlKernelHellinger, /**< Hellinger's kernel */ VlKernelJS /**< Jensen-Shannon kernel */ } ; /** @brief Vector comparison types */ typedef enum _VlVectorComparisonType VlVectorComparisonType ; /** @brief Get the symbolic name of a vector comparison type ** @param type vector comparison type. ** @return data symbolic name. **/ VL_INLINE char const * vl_get_vector_comparison_type_name (int type) { switch (type) { case VlDistanceL1 : return "l1" ; case VlDistanceL2 : return "l2" ; case VlDistanceChi2 : return "chi2" ; case VlDistanceMahalanobis : return "mahalanobis" ; case VlKernelL1 : return "kl1" ; case VlKernelL2 : return "kl2" ; case VlKernelChi2 : return "kchi2" ; default: return NULL ; } } VL_EXPORT VlFloatVectorComparisonFunction vl_get_vector_comparison_function_f (VlVectorComparisonType type) ; VL_EXPORT VlDoubleVectorComparisonFunction vl_get_vector_comparison_function_d (VlVectorComparisonType type) ; VL_EXPORT VlFloatVector3ComparisonFunction vl_get_vector_3_comparison_function_f (VlVectorComparisonType type) ; VL_EXPORT VlDoubleVector3ComparisonFunction vl_get_vector_3_comparison_function_d (VlVectorComparisonType type) ; VL_EXPORT void vl_eval_vector_comparison_on_all_pairs_f (float * result, vl_size dimension, float const * X, vl_size numDataX, float const * Y, vl_size numDataY, VlFloatVectorComparisonFunction function) ; VL_EXPORT void vl_eval_vector_comparison_on_all_pairs_d (double * result, vl_size dimension, double const * X, vl_size numDataX, double const * Y, vl_size numDataY, VlDoubleVectorComparisonFunction function) ; /* ---------------------------------------------------------------- */ /* Numerical analysis */ /* ---------------------------------------------------------------- */ VL_EXPORT void vl_svd2 (double* S, double *U, double *V, double const *M) ; VL_EXPORT void vl_lapack_dlasv2 (double *smin, double *smax, double *sv, double *cv, double *su, double *cu, double f, double g, double h) ; VL_EXPORT int vl_solve_linear_system_3 (double * x, double const * A, double const *b) ; VL_EXPORT int vl_solve_linear_system_2 (double * x, double const * A, double const *b) ; VL_EXPORT int vl_gaussian_elimination (double * A, vl_size numRows, vl_size numColumns) ; /* VL_MATHOP_H */ #endif