PROBLEM SET 5: CAT OR DOG?

Yinda Zhang @ 4:30pm-5:30pm, Room CS 105

NEURAL NETWORK

NEURAL NETWORK

Neural Network in 5 minutes

out

CAT OR DOG?

WHY DEEP LEARNING?

Output = F(Input)

Any reasonably well-behaved function can be approximated as close as we want by a two-layer network.

Then, why deep?
Then, why non-linear?

DEEP NEURAL NETWORK

Model is deep, need more parameters

Big data

Memory limitation

Convolutional Neural network

Mini-batch training

Cannot perform global optimization

Gradient descend

Need good initial

Fine-tune from a good initial

PROBLEM 1&2

Define a network: JSON

Train&Test Marvin: Call...

MNIST

Tensor

PROBLEM 3&4

Prepare data
Modify alexnet.json
Train from scratch
Train by fine-tune
Overfitting?

PROBLEM 5

Try many inputs

and see which one cause high response

PROBLEM 5

Alexnet is pre-trained for 1000-classification.

Low-level kernels detect simple geometry.

Top-level kernels respond to class-specific patterns.

