

# 3D Shape Matching

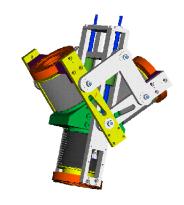
Thomas Funkhouser COS 429

#### **Motivation**

### Large repositories of 3D data are available



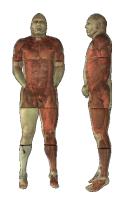
Computer Graphics



Mechanical CAD



Anthropometry



Medicine



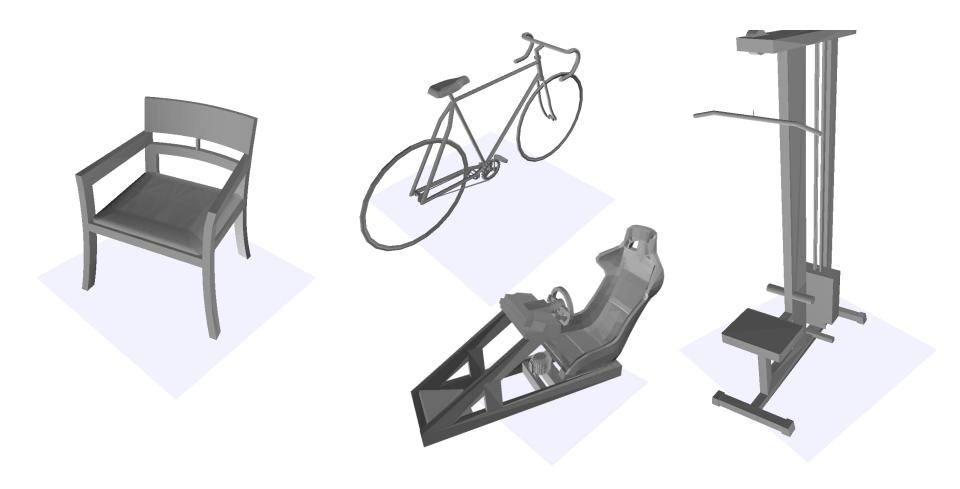
Cultural Heritage



Site Monitoring

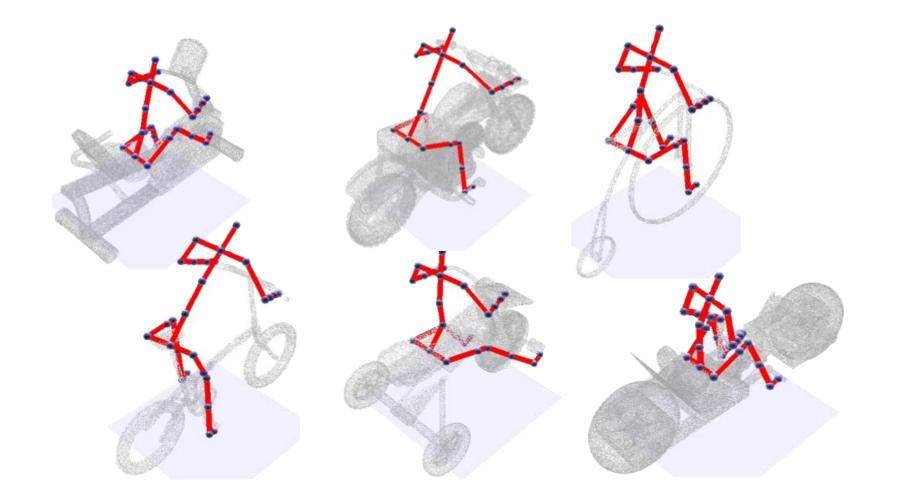
### **Problem**

Most 3D data lacks structural, semantic, and functional annotations



### Goal

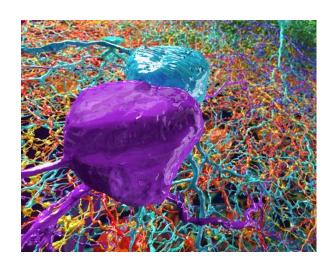
Infer structures, labels, functions, and relationships automatically from 3D data

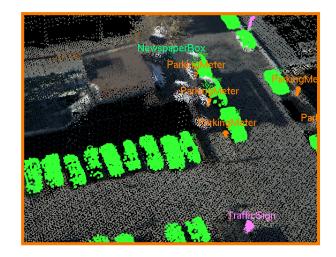


## **Shape Matching**

#### Example applications:

- Archaeology
- Molecular biology
- Paleontology
- Neuroscience
- Urban planning
- Numismatics
- Geometric modeling
- Medicine
- Art
- o etc.



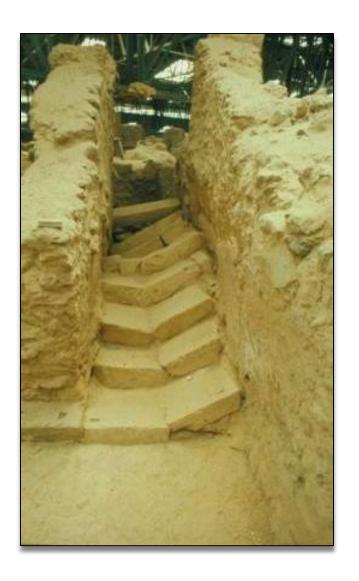




## Archaeology: Matching Fresco Fragments

### Buried city discovered in 1967

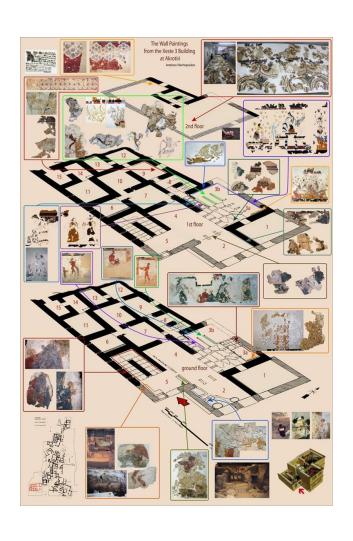




### Buried city discovered in 1967



#### Many walls were decorated with wall paintings





#### Many walls were decorated with wall paintings





... but most walls are shattered into fragments



... but most walls are shattered into fragments



## Challenge

... and re-assembling the fragments is difficult





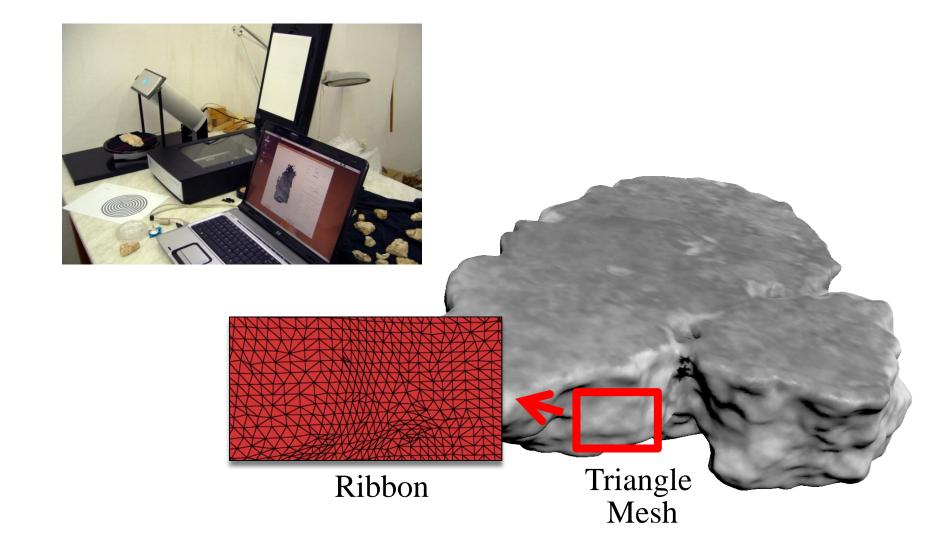
## Challenge

... and re-assembling the fragments is difficult



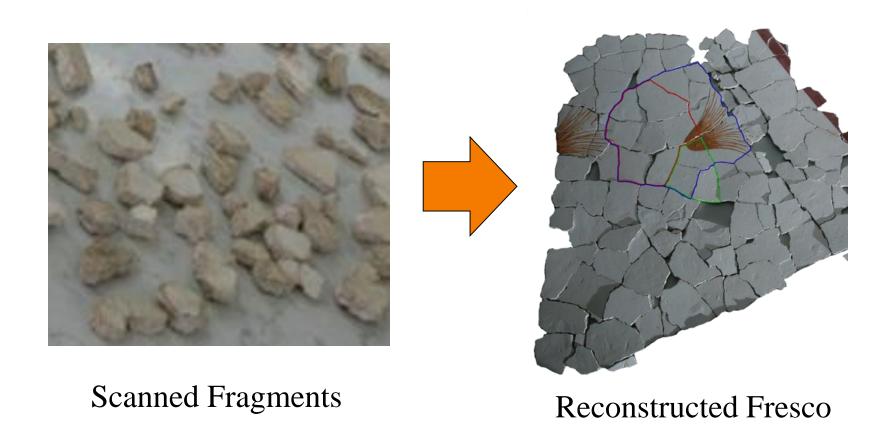
### **Computer-Assisted Reconstruction**

1) Scan digital representations of fragments

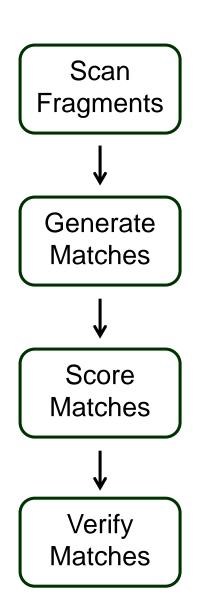


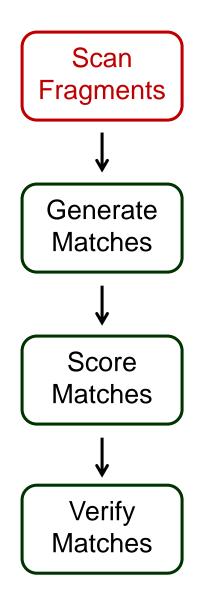
### **Computer-Assisted Reconstruction**

2) Reconstruct frescoes with computer algorithms

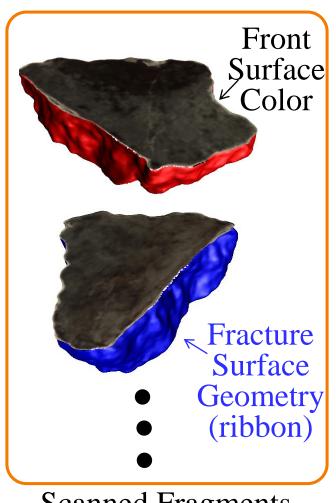


## **Computer-Assisted Reconstruction**

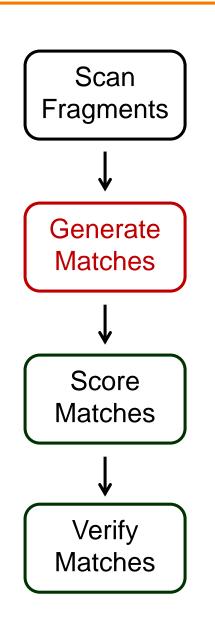




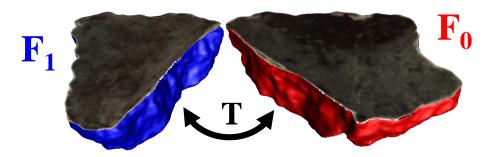




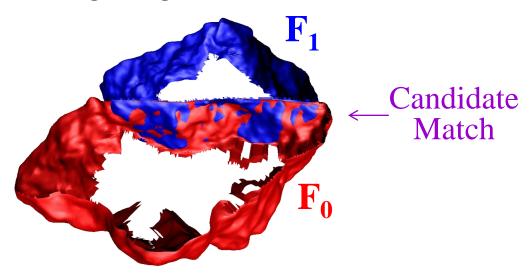
**Scanned Fragments** 

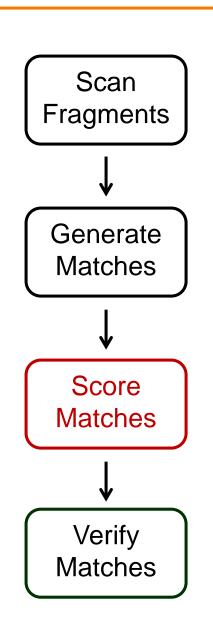


For every pair of fragments F<sub>0</sub> and F<sub>1</sub> ...

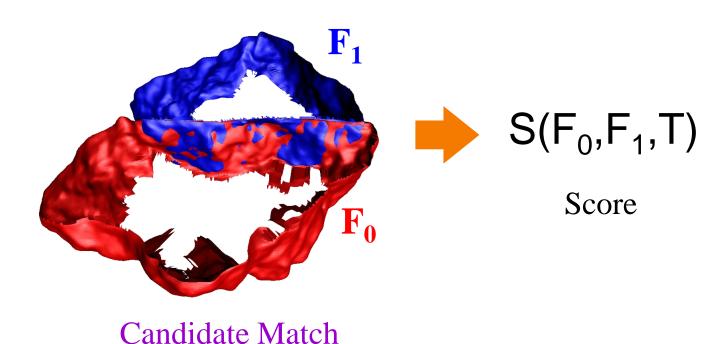


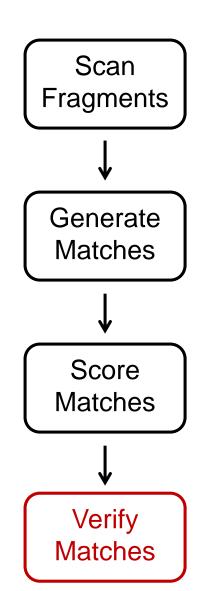
Generate candidate match for every plausible aligning transformation T



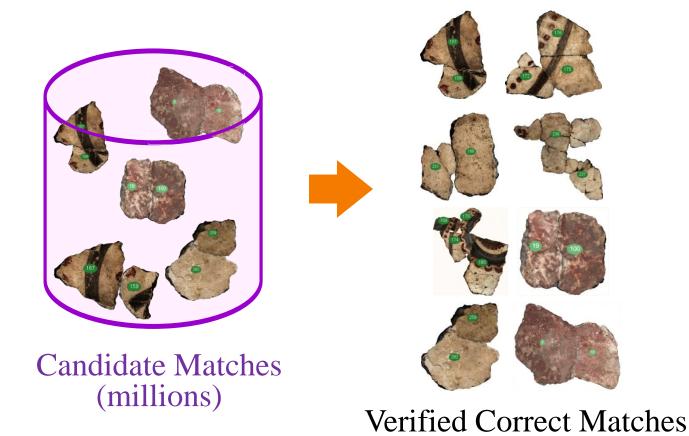


For every candidate match, compute a score representing "how good it is"



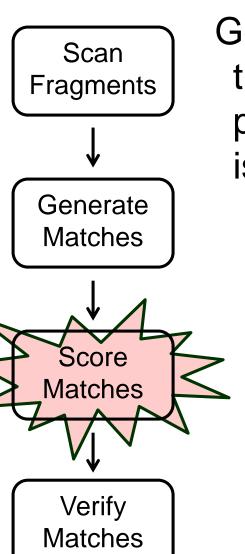


Sort the candidate matches by score, and check top ones to see if they are correct



(tens or hundreds)

#### **Focus of This Talk**



Goal: Develop a scoring method that accurately estimates the probability that a candidate match is correct

#### **Previous Methods**

Most prior systems scored matches using functions combining a few match properties with weights

∘ McBride et al., 2003

$$\lambda_{\mathrm{l}} \cdot C_{\mathrm{distance}} + \lambda_{\mathrm{2}} \cdot \sqrt{C_{\mathrm{length}}} + \lambda_{\mathrm{3}} \cdot \sqrt{C_{\mathrm{diagnostic}}}$$

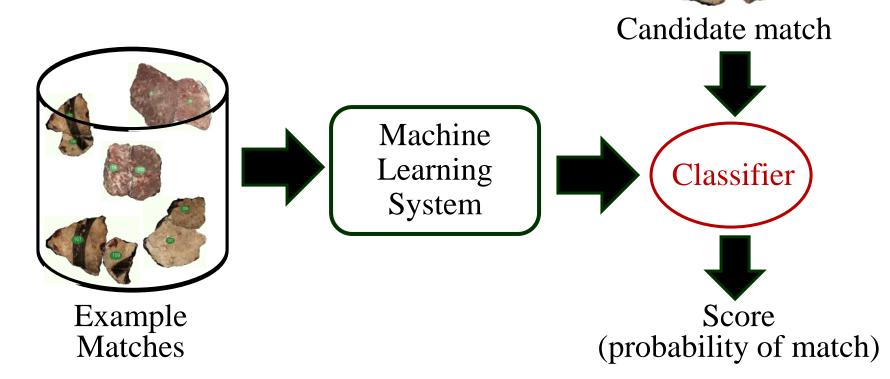
Brown et al., 2008 (Ribbonmatcher Error)

$$\lambda_1 \cdot C_{\text{WindowRMSD}} + \lambda_2 \cdot C_{\text{Thickness}}$$

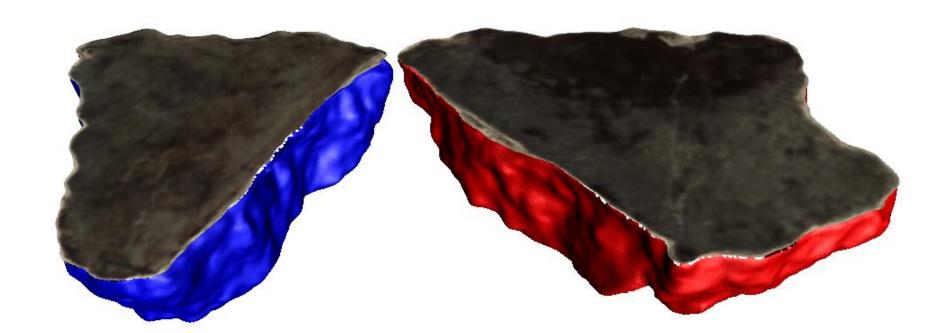
### **Our Approach**

#### Machine learning

- User provides example correct and incorrect matches
- System learns classifier to predict correctness of new candidate matches based on their properties

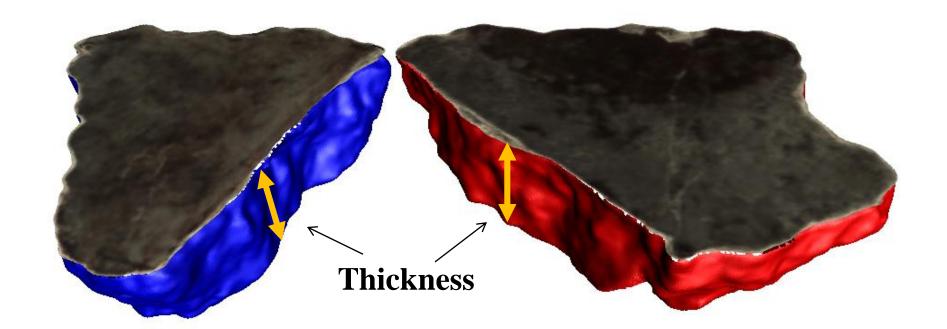


Measure compatibility of fragments

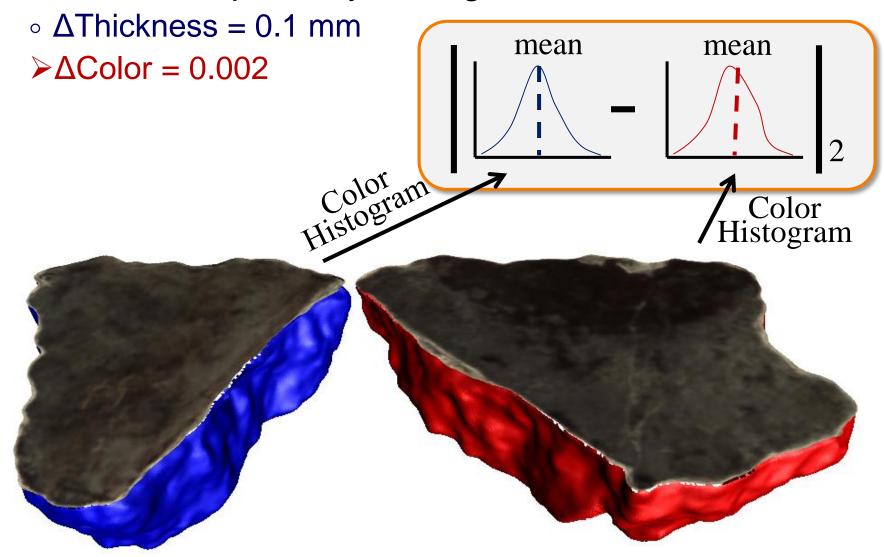


Measure compatibility of fragments

 $\triangleright \Delta$ Thickness = 0.1 mm



Measure compatibility of fragments

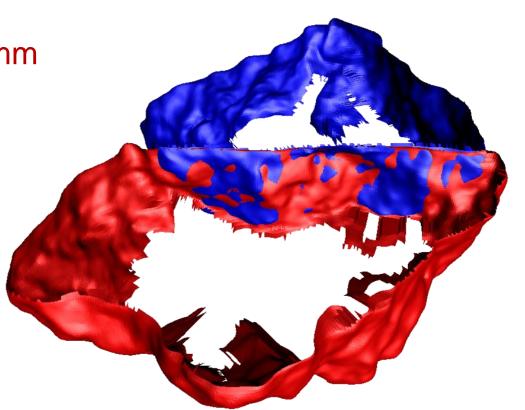


#### Measure alignment of fragments

∘ ∆Thickness = 0.1 mm

 $\circ$   $\Delta$ Color = 0.002

≻∆Alignment = 0.24 mm



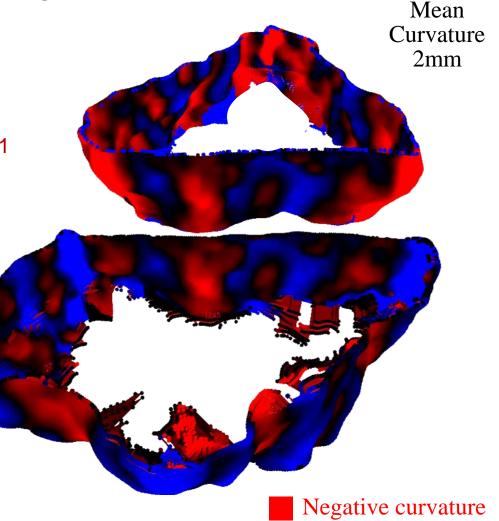
Measure alignment of fragments

∘ ∆Thickness = 0.1 mm

 $\circ$   $\triangle$ Color = 0.002

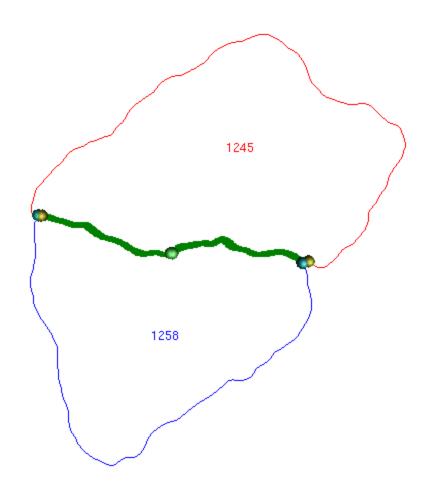
∘ ∆Alignment = 0.24 mm

 $\triangleright \Delta Curvature = 0.06 \text{ mm}^{-1}$ 

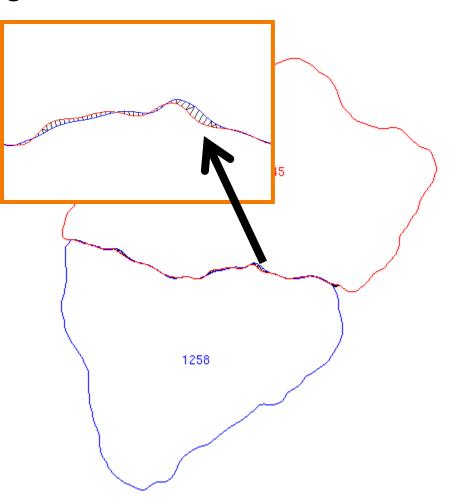


Negative curvature
Positive curvature

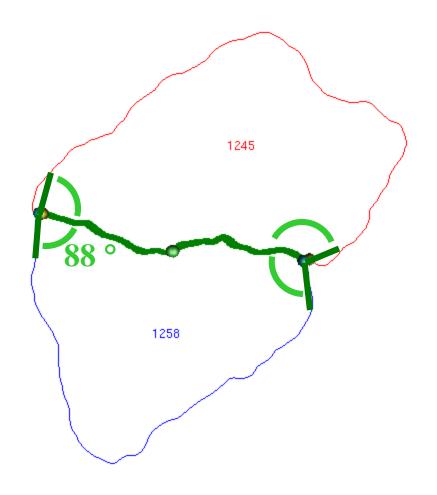
- $\circ$   $\triangle$ Color = 0.002
- ∘ ΔAlignment = 0.24 mm
- ∘ ∆Curvature = 0.06 mm<sup>-1</sup>
- ➤ Length = 43.6 mm
- Overlap = 0.7 mm
- $\circ$  Min int. angle = 88  $^{\circ}$
- ∘ Max ext. angle = 191 °
- Etc.



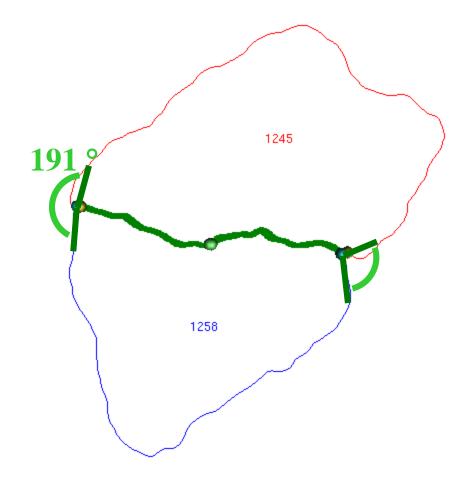
- ∘ ΔThickness = 0.1 mm
- $\circ$   $\triangle$ Color = 0.002
- ∘ ∆Alignment = 0.24 mm
- Length = 43.6 mm
- ➤Overlap = 0.7 mm
- $\circ$  Min int. angle = 88  $^{\circ}$
- ∘ Max ext. angle = 191 °
- Etc.



- ∘ ΔThickness = 0.1 mm
- $\circ$   $\triangle$ Color = 0.002
- ∘ ∆Alignment = 0.24 mm
- ∘ ∆Curvature = 0.06 mm<sup>-1</sup>
- Length = 43.6 mm
- Overlap = 0.7 mm
- ➤Min int. angle = 88 °
- ∘ Max ext. angle = 191 °
- Etc.



- ∘ ΔThickness = 0.1 mm
- $\circ$   $\Delta$ Color = 0.002
- ∘ ΔAlignment = 0.24 mm
- ∘ ∆Curvature = 0.06 mm<sup>-1</sup>
- Length = 43.6 mm
- Overlap = 0.7 mm
- $\circ$  Min int. angle = 88  $^{\circ}$
- ➤ Max ext. angle = 191 °
- Etc.



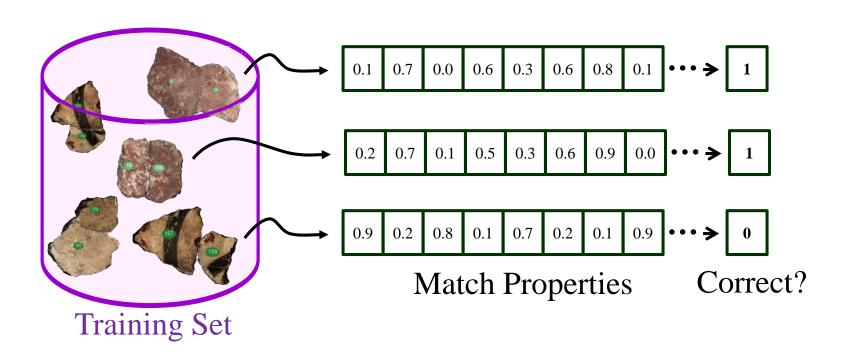
#### In all, 64 properties per match

| ContourContactLength          | $0.5 \cdot ( \mathit{CR}_0  +  \mathit{CR}_1 )$                                             |
|-------------------------------|---------------------------------------------------------------------------------------------|
| ContourContactDensity         | $0.5 \cdot ( CC_0 / CR_0  +  CC_1 / CR_1 )$                                                 |
| ContourContactRMSD            | $\sqrt{\sum_{i,j} (C_{i,i}[j] - C_{i,1-i}[j])^2}$ , where                                   |
|                               | $(C_{i,i}[j], C_{i,1-i}[j]) \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \}$                   |
|                               | $\sqrt{\sum_{i,j}(C_{i,i}[j]-L_i)^2}$ , where                                               |
|                               | $C_{i,i}[j] \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \}, $ and                             |
|                               | $L_i$ is the minimizing line                                                                |
| ContourContactCurvL2          | $\sqrt{\sum_{i,j} (\text{Curv}(C_{i,i}[j],t,s) - \text{Curv}(C_{i,1-i}[j],t,s))^2}$ , where |
| (4 properties)                | $(C_{,ii}[j], C_{i,1-i}[j]) \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \},$                  |
|                               | $t \in \{ \text{ Horizontal } \}, \text{ and }$                                             |
|                               | $s \in \{1\text{mm}, 2\text{mm}, 4\text{mm}, 8\text{mm}\}$                                  |
| ContourContactLengthFraction  | $Stat( CR_i )/Measurement(C_i)$ , where                                                     |
| . 1 1                         | $Stat \in \{ Min, Max \}, and$                                                              |
|                               | Measurement $\in \{ \text{ Perimeter}, \sqrt{Area} \}$                                      |
| ContourWindowRMSD             | $\sqrt{\sum_{i,j} (C_{i,i}[j] - C_{i,1-i}[j])^2}$ , where                                   |
| (3 properties)                | $(C_{i,i}[j], C_{i,1-i}[j]) \in CW(s), j \in \{0,,  CW(s) \},$                              |
|                               | and $s \in \{4\text{mm}, 8\text{mm}, 16\text{mm}\}\$                                        |
| ContourMergeConvexity         | Convexity( $C_0 \cup C_1$ )                                                                 |
| ContourMergeConvexityFraction | $Stat(Convexity(C_0) / Convexity(C_0 \cup C_1),$                                            |
|                               | Convexity( $C_1$ ) / Convexity( $C_0 \cup C_1$ )), where                                    |
| (2 properties)                | Stat ∈ { Min, Max }                                                                         |
| ContourOverlapArea            | $ C_0 \cap C_1 $                                                                            |
|                               | $Stat(Depth(C_{i,i}[j]))$ , where                                                           |
|                               | $C_{i,i}[j] \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \},$ and                              |
|                               | $Stat \in \{ Avg, Max \}$                                                                   |
| _                             | $Stat(Angle(CJ_i, t))$ , where                                                              |
| , , ,                         | Stat $\in$ { Min, Max }, and                                                                |
|                               | $t \in \{ \text{ Exterior, Interior } \}$                                                   |

| RibbonContactDensity 0 | $5 \cdot ( RR_0  +  RR_1 ) 5 \cdot ( RC_0 / RR_0  +  RC_1 / RR_1 )$                                  |
|------------------------|------------------------------------------------------------------------------------------------------|
|                        | $5 \cdot ( RC_0 / RR_0  +  RC_1 / RR_1 )$                                                            |
| RibbonContactLength 0  | 5 ([Re0]/ [Rt0] + [Re1]/ [Rt1])                                                                      |
|                        | $5 \cdot (( RR_0 \rightarrow C_0  +  RR_1 \rightarrow C_1 ))$ , where                                |
| Ri                     | $R_i \rightarrow C_i$ is the projection of $RR_i$ onto $C_i$                                         |
| RibbonContactRMSD 1    | $\sqrt{\sum_{i,j} (R_{i,i}[j] - R_{i,1-i}[j])^2}$ , where                                            |
| (R                     | $R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \}$                             |
| RibbonContactPlanarity | $\sum_{i,j} (R_{i,i}[j] - P_i)^2$ , where                                                            |
| $\dot{R}_i$            | $i,i[j] \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \}, $ and                                          |
| $P_i$                  | is the minimizing vertical plane                                                                     |
| RibbonContactHCurvL2   | $\sqrt{\sum_{i,j} (\text{Curv}(R_{i,i}[j],t,s) - \text{Curv}(R_{i,1-i}[j],t,s))^2}$ , where          |
| (4 properties) (R      | $R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \},$                            |
|                        | ∈ { Horizontal }, and                                                                                |
| s                      | € { 1mm, 2mm, 4mm, 8mm }                                                                             |
| RibbonContactCurvL2    | $\sum_{i,j} (\operatorname{Curv}(R_{i,i}[j],t,s) - \operatorname{Curv}(R_{i,1-i}[j],t,s))^2$ , where |
| (4 properties) (R      | $R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \},$                            |
| t e                    | ∈ { Vertical, Mean }, and                                                                            |
| s                      | € { 1mm, 2mm }                                                                                       |
| RibbonWindowRMSD       | $\sum_{i,j} (R_{i,i}[j] - R_{i,1-i}[j])^2$ , where                                                   |
| (3 properties) (R      | $R_{i,i}[j], R_{i,1-i}[j]) \in RW(s), j \in \{0,,  RW(s) \},$                                        |
| an                     | $ad s \in \{4mm, 8mm, 16mm\}$                                                                        |
| RibbonJunctionAngle St | $\operatorname{tat}(\operatorname{Angle}(RJ_i, t))$ , where                                          |
| (4 properties) St      | at ∈ { Min, Max }, and                                                                               |
|                        | € { Exterior, Interior }                                                                             |
|                        | Thickness $(F_0)$ - Thickness $(F_1)$ <sup>2</sup> , where                                           |
| I                      | hickness( $F_i$ ) is the average number of columns                                                   |
|                        | ith scanned vertex positions in each row of $R_i$                                                    |
|                        | $tat(I_0, c) - Stat(I_1, c))^2$ , where                                                              |
|                        | $at \in \{ Mean, Median, Variance \}, and$                                                           |
|                        | € { Red, Green, Blue, Luminance }                                                                    |
| FragmentAreaFraction m | $\operatorname{in}( C_0 / C_1 ,  C_1 / C_0 )$                                                        |

## Learning a Scoring Function

Learn a classifier that predicts the probability that a match is correct based on its properties



### Learning a Scoring Function

#### Classifier

- Decision Tree
  - Each branch checks the value of a property
  - Each leaf has linear regression model
  - Produces score "roughly" modeling probability
  - Selects good features automatically

```
RibbonContactRMSD <= 0.429:
  RibbonContactRMSD \leq 0.375:
    RibbonContactPlanarity <= 0.517:
      ContourContactRMSD <= 0.286:
        ContourContact4mmHorizCurvL2 <= 0.009 : LM1 (29)
        ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112)
      ContourContactRMSD > 0.286 : LM3 (560)
    RibbonContactPlanarity > 0.517:
      RibbonContactArea <= 446.36:
        RibbonContactRMSD <= 0.36:
          RibbonJunctionMinInteriorAngle <= 2.232 :
            ContourContactRMSD <= 0.217 : LM4 (17)
            ContourContactRMSD > 0.217:
              ContourContactMinLenAreaFract <= 0.309 : LM5 (20)
              ContourContactMinLenAreaFract > 0.309:
                RibbonContactRMSD <= 0.331 : LM6 (12)
                RibbonContactRMSD > 0.331: LM7 (20)
          RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29)
        RibbonContactRMSD > 0.36: LM9 (91)
      RibbonContactArea > 446.36: LM10 (53)
  RibbonContactRMSD > 0.375:
    RibbonContactArea <= 235.969 : LM11 (3015)
    RibbonContactArea > 235.969:
      RibbonContact1mmMeanCurvL2 <= 0.121 : LM12 (603)
      RibbonContact1mmMeanCurvL2 > 0.121 : LM13 (151)
RibbonContactRMSD > 0.429: LM14 (7416)
```

Decision tree learned on Synthetic Fresco

# Learning a Scoring Function

#### Classifier

- Decision Tree
  - Each branch checks the value of a property
  - Each leaf has

linear regression model

#### Truth =

- -0.0013 \* RibbonContactRMSD
- + 0 \* RibbonContactArea
- + 0.0001 \* RibbonContactPlanarity
- + 0.0005 \* RibbonContact1mmMeanCurvatureL2
- + 0 \* RibbonJointMinInteriorAngle
- + 0 \* RibbonJointMaxExteriorAngle
- 0.0001 \* ContourContactRMSD
- 0.0007 \* ContourContact4mmHorizontalCurvatureL2
- +0.0002

"Matches with large ContactRMSD are unlikely" (score is near zero)

```
RibbonContactRMSD <= 0.429:
  RibbonContactRMSD \leq 0.375:
    RibbonContactPlanarity <= 0.517:
      ContourContactRMSD <= 0.286:
        ContourContact4mmHorizCurvL2 <= 0.009 : LM1 (29)
        ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112)
      ContourContactRMSD > 0.286 : LM3 (560)
    RibbonContactPlanarity > 0.517:
      RibbonContactArea <= 446.36:
        RibbonContactRMSD <= 0.36:
          RibbonJunctionMinInteriorAngle <= 2.232 :
            ContourContactRMSD <= 0.217 : LM4 (17)
            ContourContactRMSD > 0.217:
              ContourContactMinLenAreaFract <= 0.309 : LM5 (20)
              ContourContactMinLenAreaFract > 0.309:
                RibbonContactRMSD <= 0.331 : LM6 (12)
                RibbonContactRMSD > 0.331: LM7 (20)
          RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29)
        RibbonContactRMSD > 0.36: LM9 (91)
      RibbonContactArea > 446.36 : LM10 (53)
  RibbonContactRMSD > 0.375:
    RibbonCoxtactArea <= 235.969 : LM11 (3015)
    RibbonContactArea > 235.969:
      RibbonContact1xmMeanCurvL2 <= 0.121 : LM12 (603)
      RibbonContact1mnnMe_{\text{mCurv}} > 0.121 : LM13 (151)
RibbonContactRMSD > 0.429 LM14 (7416)
```

# Decision tree learned on Synthetic Fresco

# Learning a Scoring Function

#### Classifier

- Decision Tree
  - Each branch checks the value of a property
  - Each leaf has

linear regression model

#### Truth =

- -5.1265 \* RibbonContactRMSD
- + 0 \* RibbonContactArea
- + 0.0138 \* RibbonContactPlanarity
- + 0.012 \* RibbonContact1mmMeanCurvatureL2
- 0.0286 \* RibbonJointMinInteriorAngle
- + 0.0006 \* RibbonJointMaxExteriorAngle
- 0.0011 \* ContourContactRMSD
- 0.1677 \* ContourContact4mmHorizontalCurvatureL2
- + 0.6273 \* ContourContactMinLengthAreaFraction
- +1.9331

"Matches with small ContactRMSD, high Planarity, a small interior angle at least at one junction, and a large relative contact length are likely to be correct" (score is large)

```
RibbonContactRMSD <= 0.429:
  RibbonContactRMSD \leq 0.375:
    RibbonContactPlanarity <= 0.517:
      ContourContactRMSD <= 0.286:
        ContourContact4mmHorizCurvL2 <= 0.009 : LM1 (29)
        ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112)
      ContourContactRMSD > 0.286 : LM3 (560)
    RibbonContactPlanarity > 0.517:
      RibbonContactArea <= 446.36:
        RibbonContactRMSD <= 0.36:
          RibbonJunctionMinInteriorAngle <= 2.232 :
            ContourContactRMSD <= 0.217 : LM4 (17)
            ContourContactRMSD > 0.217:
              ContourContactMinLenAreaFract <= 0.309 : LM5 (20)
              ContourContactMinLenAreaFract > 0.309
                RibbonContactRMSD < 0.331 : LM6 (
                RibbonContactRMSD > 0.331; LM7 (2)
          RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29)
        RibbonContactRMSD > 0.36: LM9 (91)
      RibbonContactArea > 446.36 : LM10 (53)
  RibbonContactRMSD > 0.375:
    RibbonContactArea <= 235.969 : LM11 (3015)
    RibbonContactArea > 235.969:
      RibbonContact1mmMeanCurvL2 <= 0.121 : LM12 (603)
      RibbonContact1mmMeanCurvL2 > 0.121 : LM13 (151)
RibbonContactRMSD > 0.429 : LM14 (7416)
```

Decision tree learned on Synthetic Fresco

## **Experimental Data Sets**

#### Synthetic Fresco

- Made specifically for this project
- Made in the style of Akrotiri wall paintings
- Destroyed purposely in 2007 A.D.

#### Tongeren Vrijthof

- Tongeren, Belgium
- Roman building
- Destroyed by fire between 1 A.D. 300 A.D.

#### Akrotiri

- Thera (Santorini, Greece)
- Late Bronze Age settlement
- Destroyed by earthquake around 1650 B.C.

# **Experiment Design**

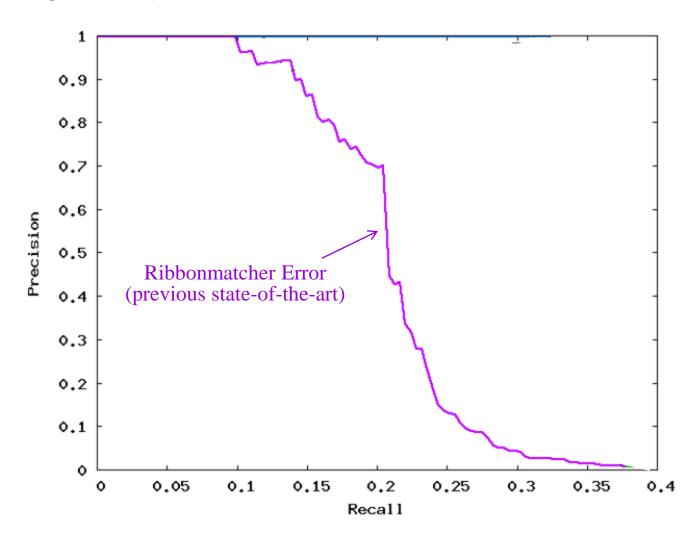
#### Train on Fresco X

- Use ribbonmatcher to generate candidate matches
- Compute properties of candidate matches
- Mark candidate matches that are correct
- Learn classifier to predict correctness of matches

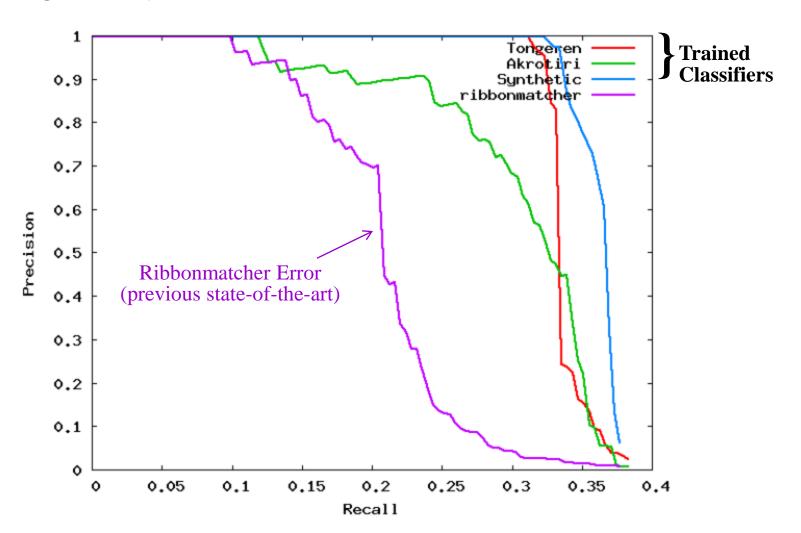
#### Test on Fresco Y

- Use ribbonmatcher to generate candidate matches
- Compute properties of candidate matches
- Mark candidate matches that are correct
- Apply classifier to predict correctness of (score) matches
- Sort matches by score, and plot precision vs. recall

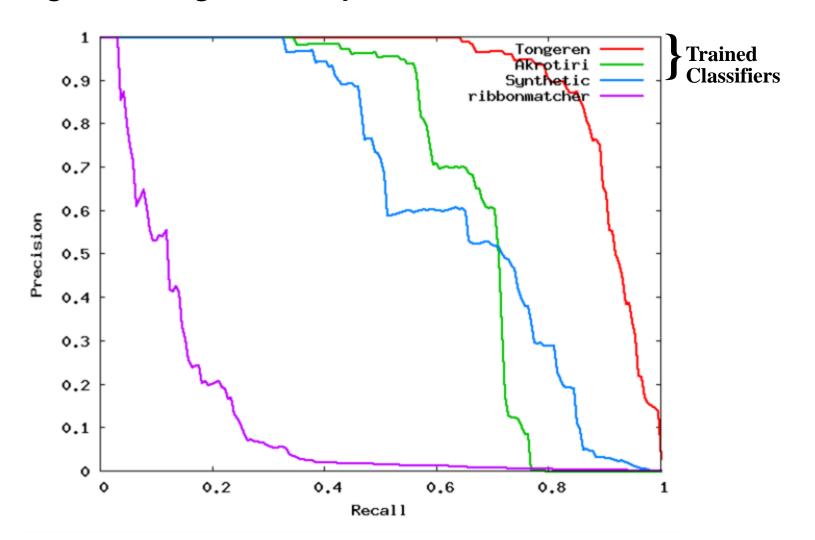
#### Testing on Synthetic Fresco:



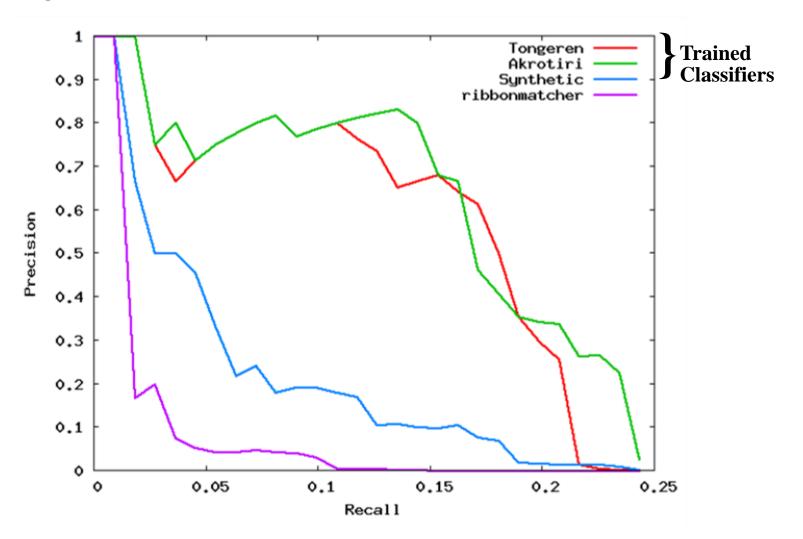
#### Testing on Synthetic Fresco:



Testing on Tongeren Vrijthof Fresco:



#### Testing on Akrotiri Fresco:



#### **Results of Predictions**

#### Totals of all predictions:

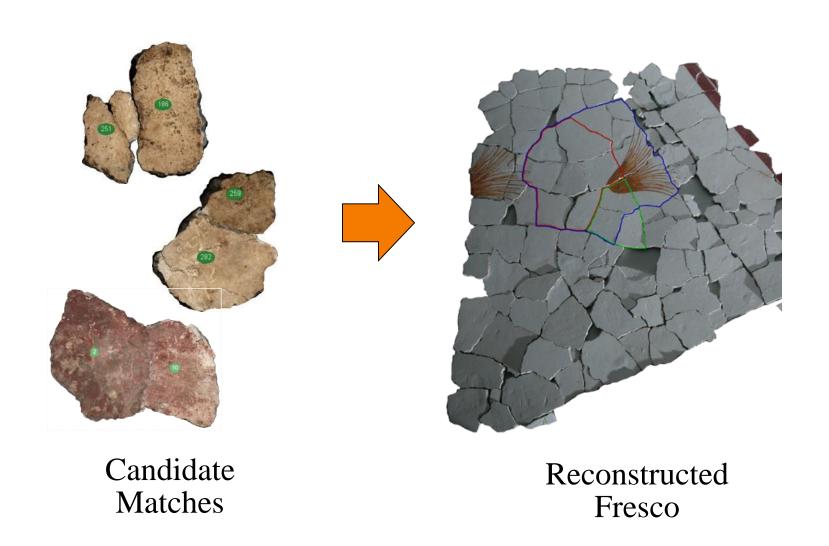
- Likely: 48 correct, 1 incorrect, 1 uncheckable
- Probable: 7 correct, 0 incorrect
- Possible: 25 correct, 19 incorrect, 1 uncheckable
- Maybe: 5 correct, 10 incorrect
- Remote: 2 correct, 15 incorrect
- Longshot: 0 incorrect, 14 incorrect

#### Summary:

- 87 correct matches
- 36 missed (found by conservators)
- 43 new (not found by conservators)

# Follow up work ...

#### Assembling matches into full reconstruction





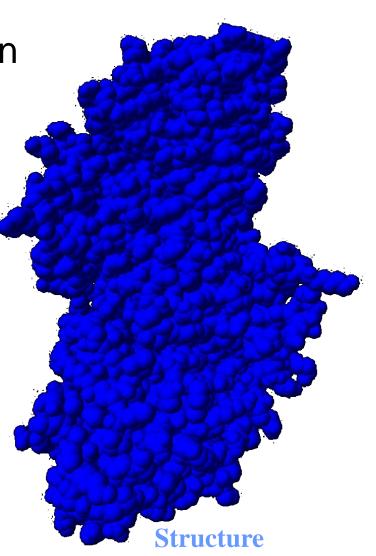
# Molecular Biology: Matching Protein Structures

#### Goal

Given a protein structure, predict its molecular function

STAGKVIKCKAAVLWEEKKPFSIEEVEVAPPKAHEVRIKMVATGICRSDD HVVSGTLVTPLPVIAGHEAAGIVESIGEGVTTVRPGDKVIPLFTPQCGKC RVCKHPEGNFCLKNDLSMPRGTMQDGTSRFTCRGKPIHHFLGTSTFSQYT VVDEISVAKIDAASPLEKVCLIGCGFSTGYGSAVKVAKVTQGSTCAVFGL GGVGLSVIMGCKAAGAARIIGVDINKDKFAKAKEVGATECVNPQDYKKPI QEVLTEMSNGGVDFSFEVIGRLDTMVTALSCCQEAYGVSVIVGVPPDSQN LSMNPMLLLSGRTWKGAIFGGFKSKDSVPKLVADFMAKKFALDPLITHVL PFEKINEGFDLLRSGESIRTILTF

**Sequence** 

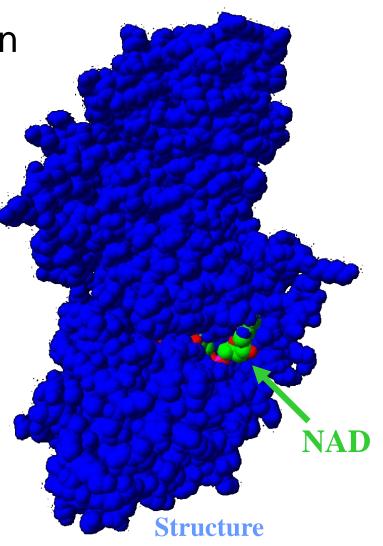


#### Goal

Given a protein structure, predict its molecular function (e.g., bound ligand type)

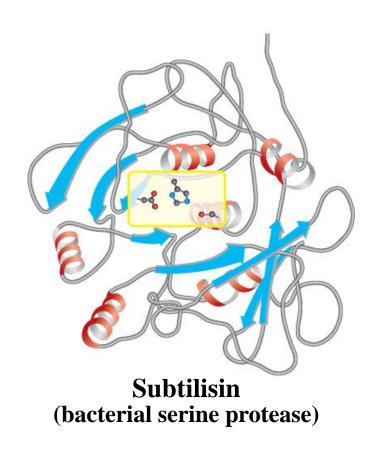
STAGKVIKCKAAVLWEEKKPFSIEEVEVAPPKAHEVRIKMVATGICRSDD HVVSGTLVTPLPVIAGHEAAGIVESIGEGVTTVRPGDKVIPLFTPQCGKC RVCKHPEGNFCLKNDLSMPRGTMQDGTSRFTCRGKPIHHFLGTSTFSQYT VVDEISVAKIDAASPLEKVCLIGCGFSTGYGSAVKVAKVTQGSTCAVFGL GGVGLSVIMGCKAAGAARIIGVDINKDKFAKAKEVGATECVNPQDYKKPI QEVLTEMSNGGVDFSFEVIGRLDTMVTALSCCQEAYGVSVIVGVPPDSQN LSMNPMLLLSGRTWKGAIFGGFKSKDSVPKLVADFMAKKFALDPLITHVL PFEKINEGFDLLRSGESIRTILTF

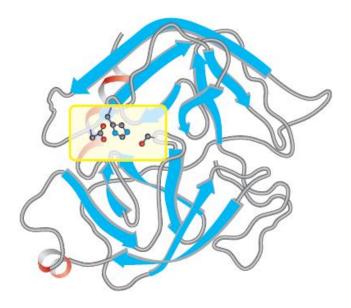
**Sequence** 



#### **Observation**

# Similarities of 3D structures in binding sites can reveal functional similarities

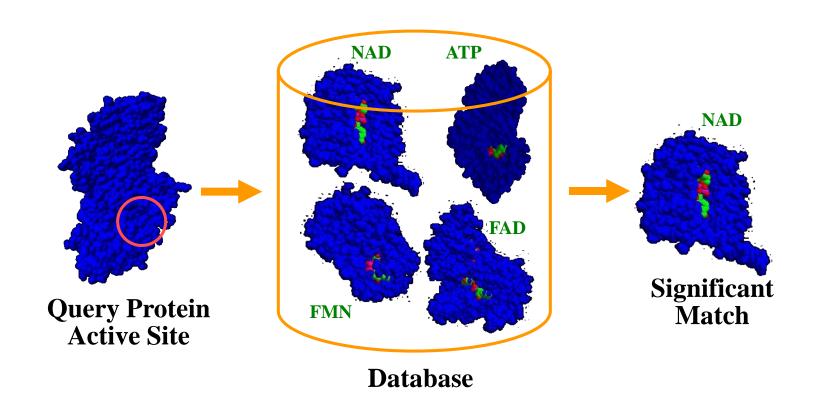




**Chymotrypsin** (mammalian serine protease)

# **General Strategy**

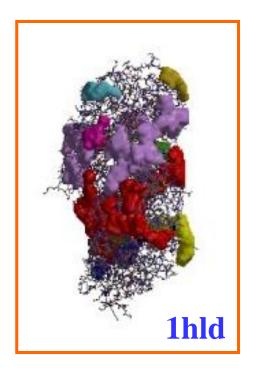
Match structure of query protein active site to others with known functions, and transfer annotations



#### **Previous Work**

#### Predicting protein-ligand binding site locations

- ➤ SURFNET [Laskowski95]
- ➤ LIGSITE [Hendlich97]
- ➤ Pocketfinder [An04]
- CAST [Liang98]
- PASS [Brady00]
- FEATURE [Wei03, Yoon07]
- Q-SiteFinder [Laurie05]
- Solvent mapping [Silberstein03]
- Conservation (e.g., [Lichtarge02])
- etc.

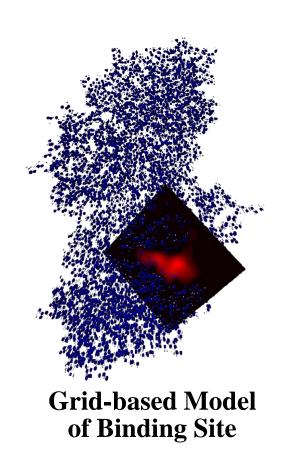


SURFNET [Laskowski96]

#### **Previous Work**

#### Geometric models of protein-ligand binding sites

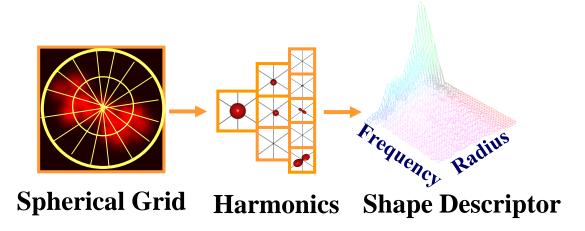
- ➤ Grids [Goodford85]
- Templates [Wallace97]
- Shells [Wei98]
- Alpha shapes [Liang98]
- Pseudo-centers [Schmitt02]
- Surfaces [Kinoshita03]
- Radial extents [Morris05]
- o etc.



#### **Previous Work**

#### Efficient algorithms for matching site models

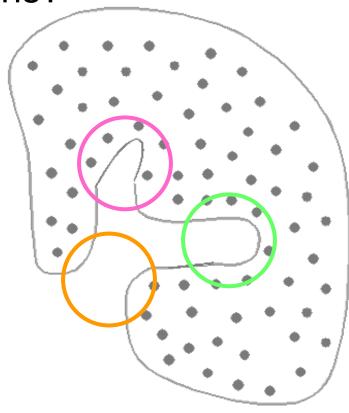
- Fast Fourier Transform [Katchalski-Katzir92]
- Association graphs [Artymiuk94]
- Geometric hashing [Wolfson97]
- Fast rotational matching [Kovacs02]
- Combinatorial expansion [Ferre04]
- ➤ Shape descriptors (e.g., [Funkhouser06])
- o etc.



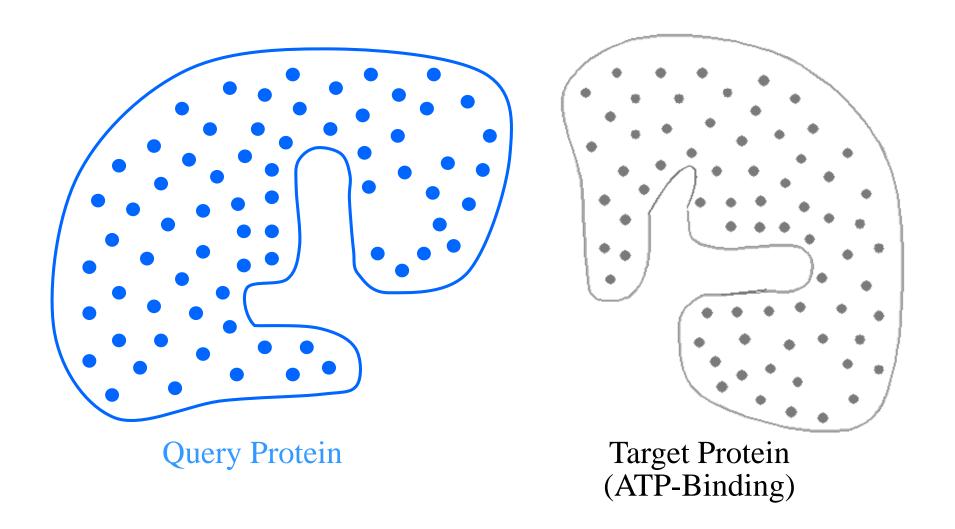
#### **Problem**

How find distinctive, partial regions of cavities?

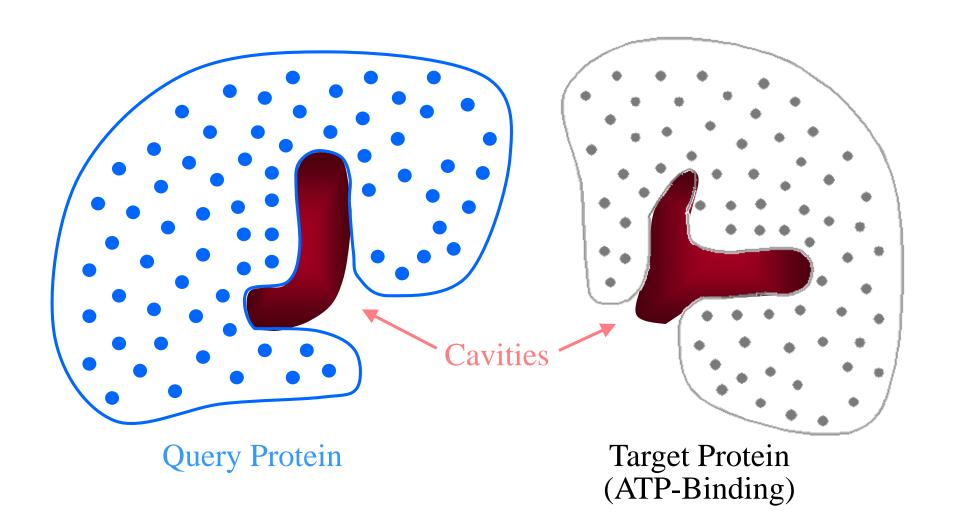
How use them to match proteins?



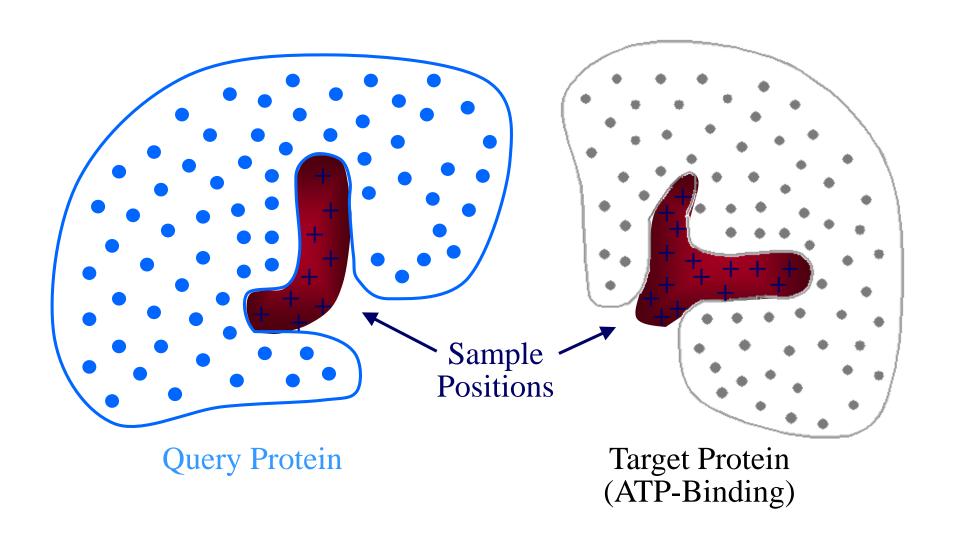
#### Given query protein, and labeled target



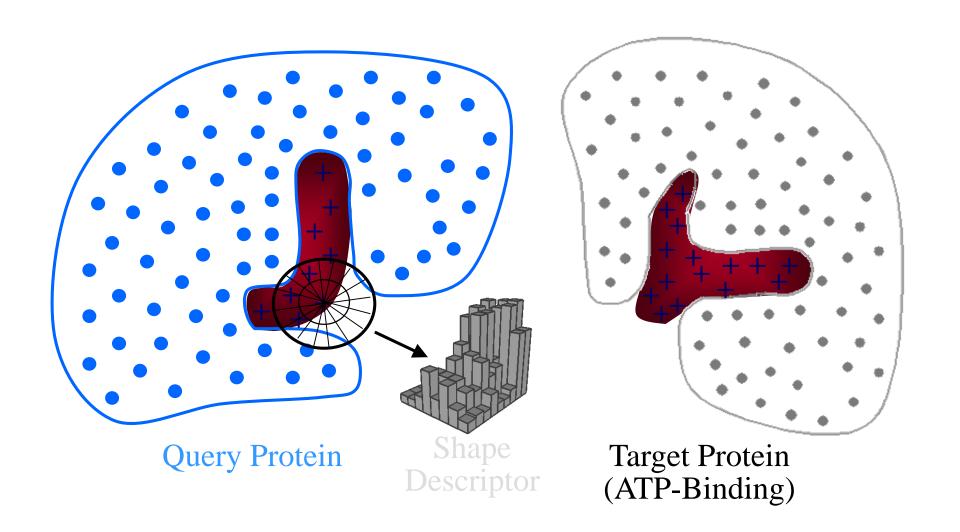
Step 1: Locate cavities



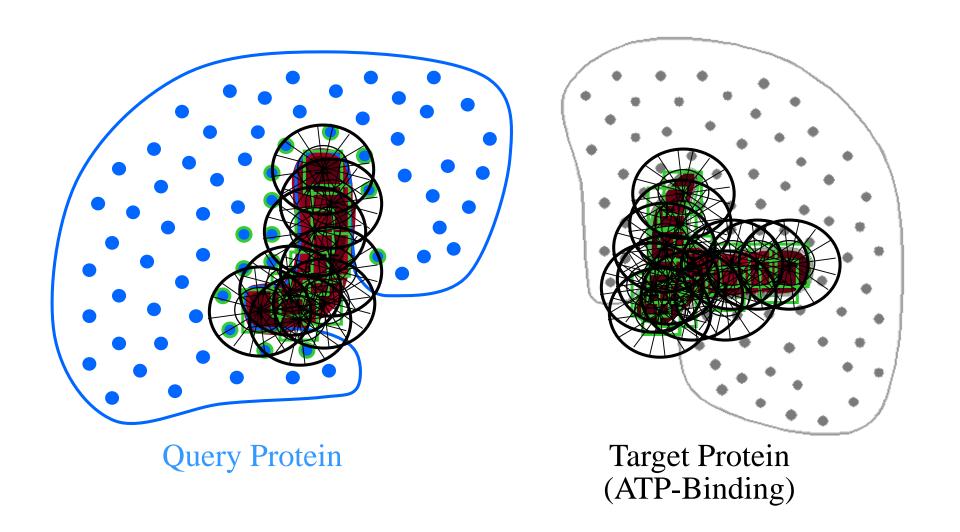
Step 2: Sample positions inside cavity



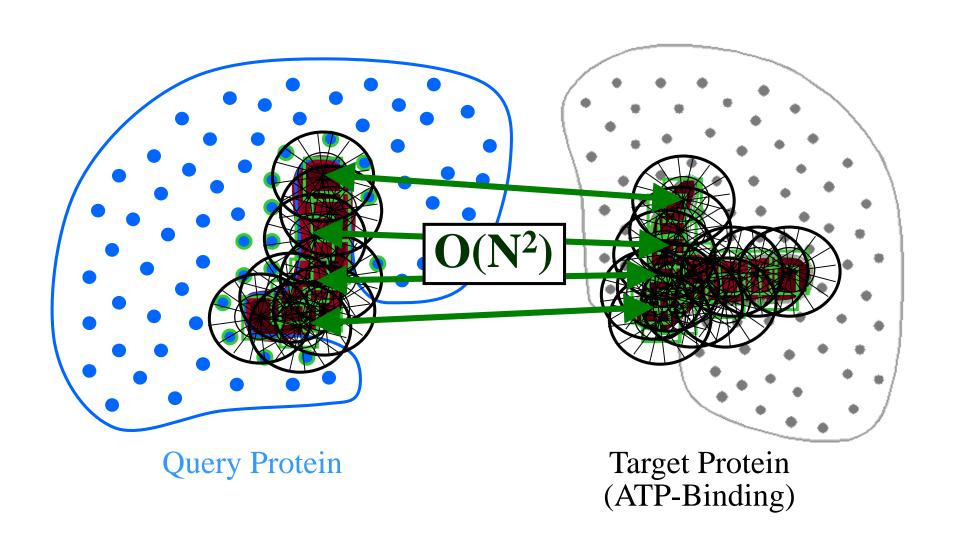
Step 3: Compute shape descriptors at every sample



Step 3: Compute shape descriptors at every sample



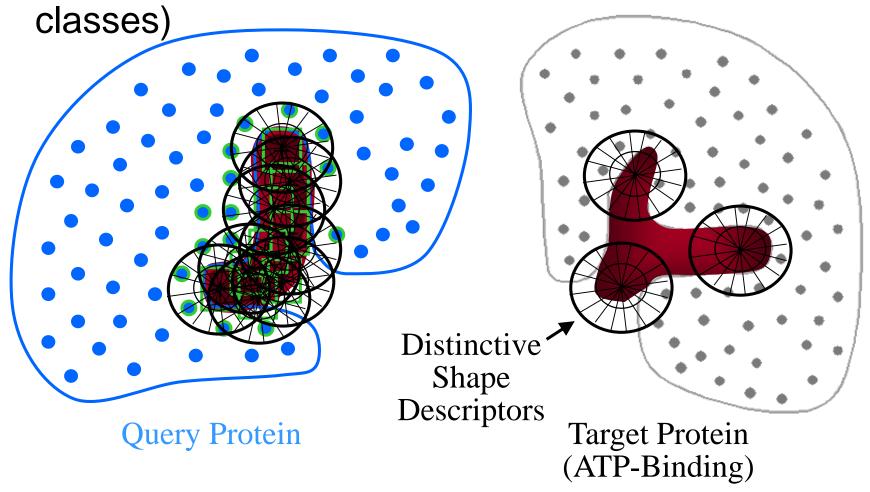
Step 4: Match all pairs of shape descriptors



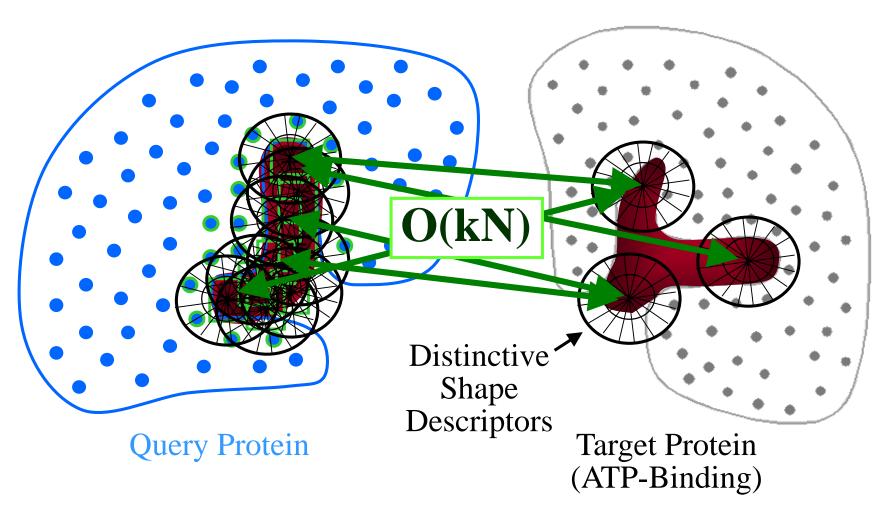
Step 4: Match all pairs of shape descriptors

# NOT!

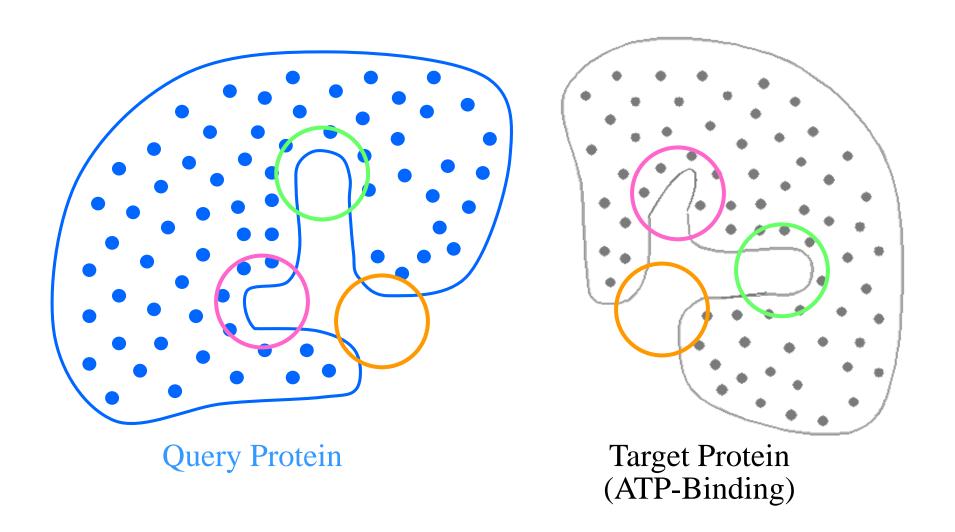
Step 4: Select *distinctive* shape descriptors for target (ones learned to discriminate functional



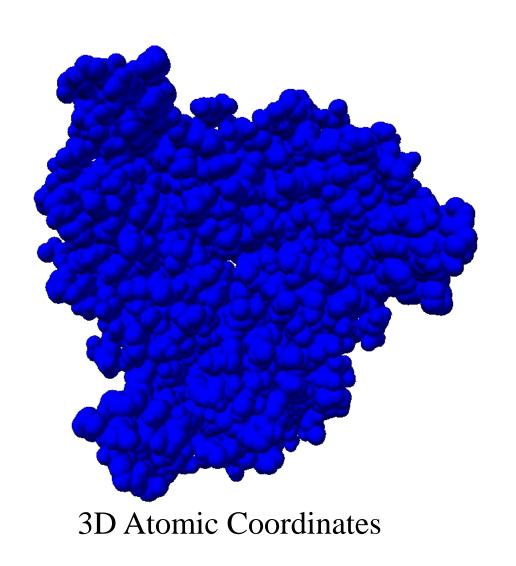
Step 5: Match query samples only to distinctive ones



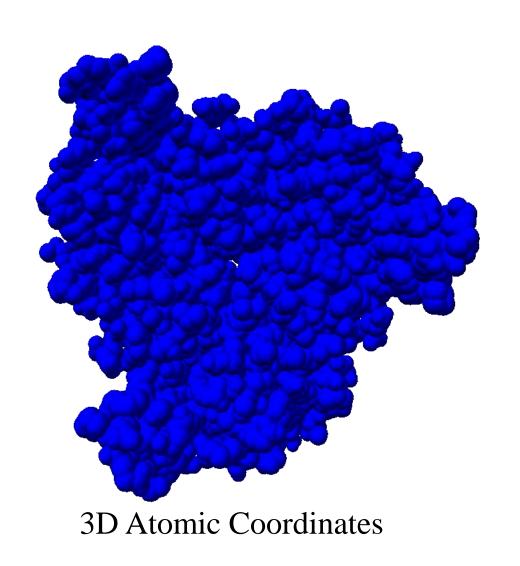
Step 6: Report the best match(es)



Input: protein structure

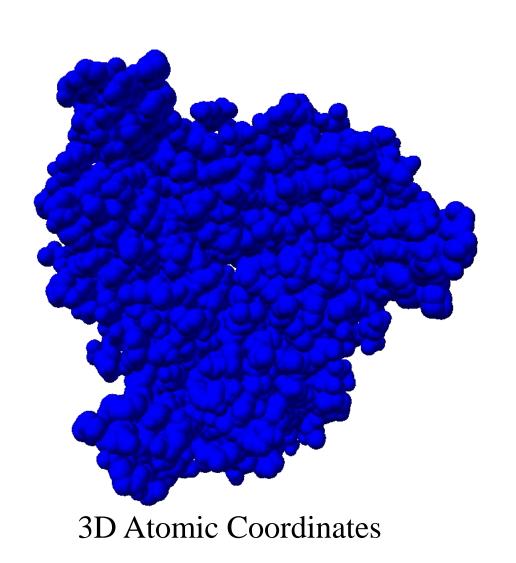


1) Locate cavities

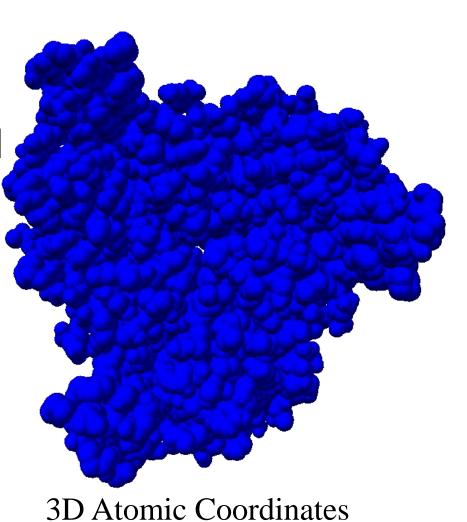


#### 1) Locate cavities

- Form feature vector for every grid point
- Learn classifier [weka] to recognize ligands
- Use classifier to estimate probability of finding ligand at any grid point
- Ensure spatial coherence and consistency

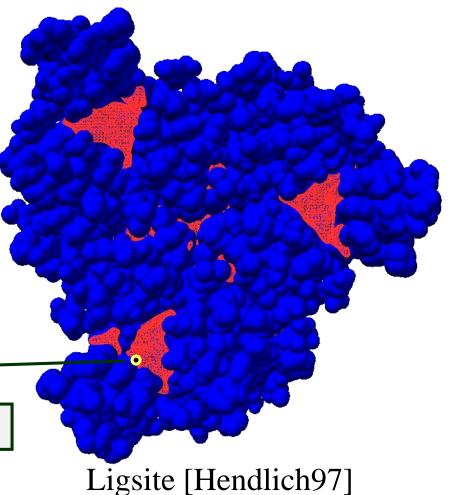


- 1) Locate cavities
  - Form feature vector for every grid point
    - Ligsite [Hendlich97]
    - Surfnet\* [Laskowski95]
    - Pocketfinder [An04]
    - Distance from surface
    - Multichain distances
    - Cavity size and rank



#### 1) Locate cavities

- Form feature vector for every grid point
  - ➤ Ligsite [Hendlich97]
  - Surfnet\* [Laskowski95]
  - Pocketfinder [An04]
  - Distance from surface
  - Multichain distances
  - Cavity size and rank

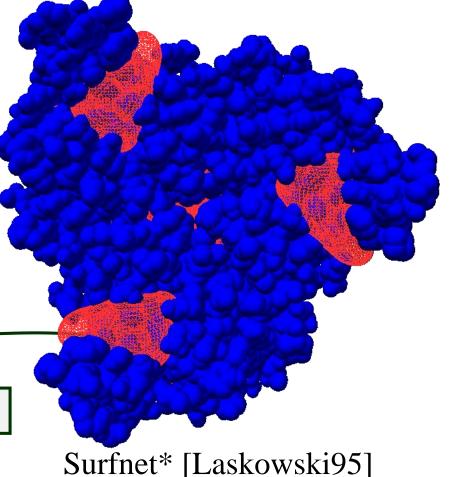


0.7

Feature Vector

#### 1) Locate cavities

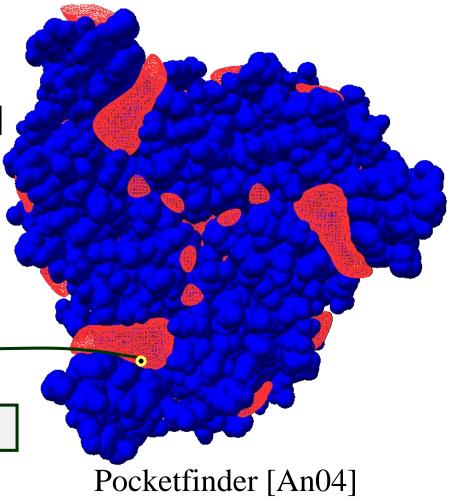
- Form feature vector for every grid point
  - Ligsite [Hendlich97]
  - ➤ Surfnet\* [Laskowski95]
  - Pocketfinder [An04]
  - Distance from surface
  - Multichain distances
  - Cavity size and rank



0.7 0.6

Feature Vector

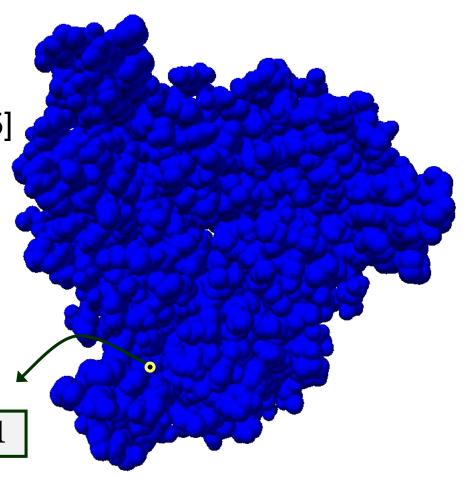
- 1) Locate cavities
  - Form feature vector for every grid point
    - Ligsite [Hendlich97]
    - Surfnet\* [Laskowski95]
    - ➤ Pocketfinder [An04]
    - Distance from surface
    - Multichain distances
    - Cavity size and rank



0.7 0.6 0.8

Feature Vector

- 1) Locate cavities
  - Form feature vector for every grid point
    - Ligsite [Hendlich97]
    - Surfnet\* [Laskowski95]
    - Pocketfinder [An04]
    - Distance from surface
    - Multichain distances
    - Cavity size and rank

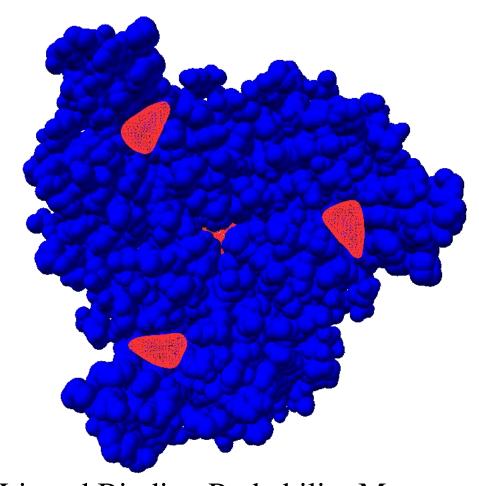


0.7 0.6 0.8 2.1 0 23 1

Feature Vector

#### 1) Locate cavities

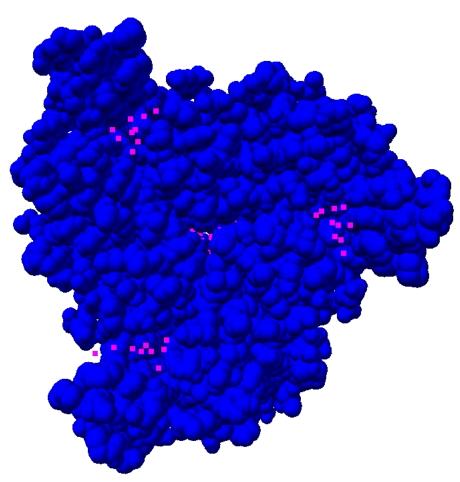
- Form feature vector for every grid point
- Learn classifier [weka]
   to recognize ligands
- Use classifier to estimate probability of finding ligand at any grid point
- Ensure spatial coherence and consistency



Ligand Binding Probability Map

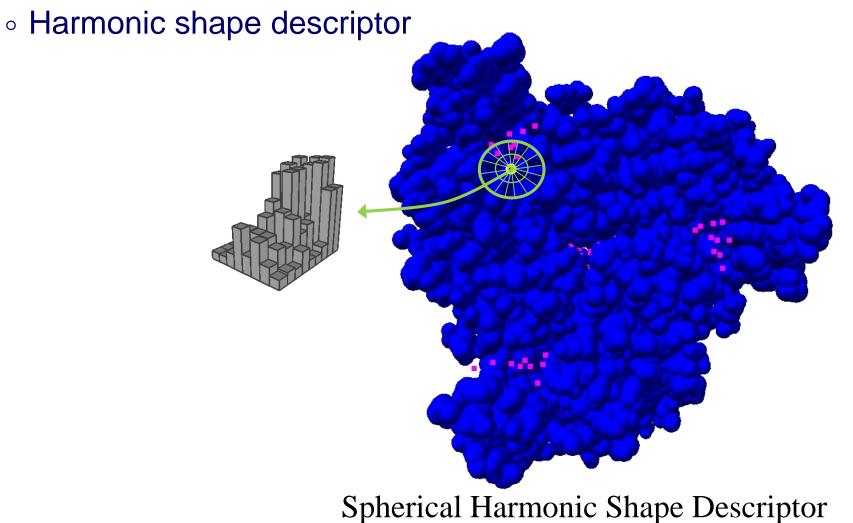
2) Sample most probable site locations

128 samples

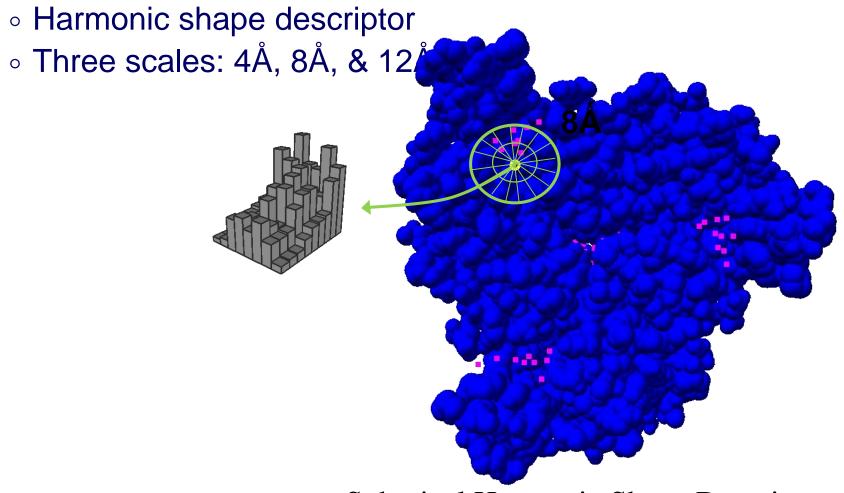


Sampled Ligand Binding Site Locations

3) Build shape descriptor for every sample location

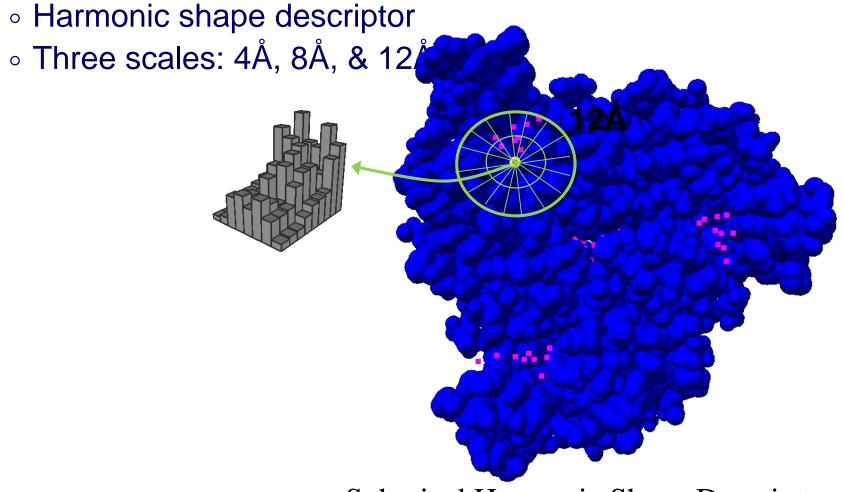


3) Build shape descriptor for every sample location

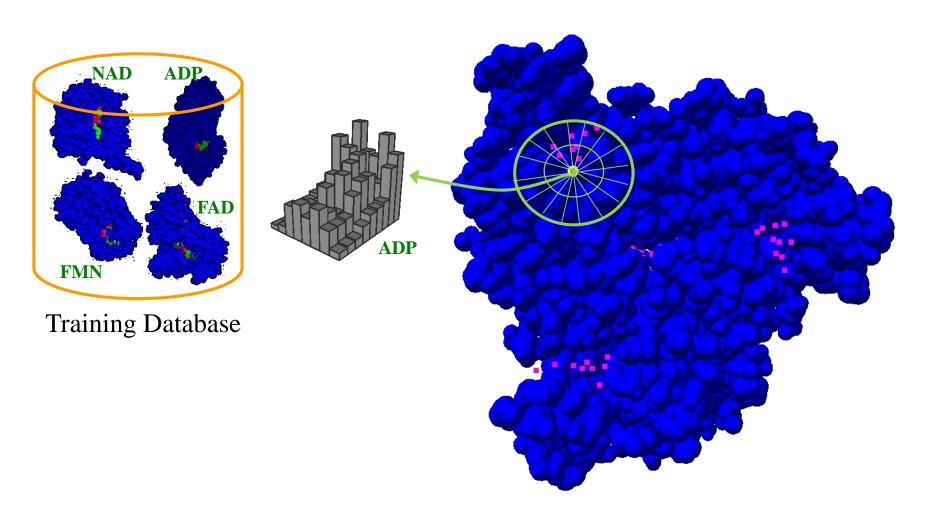


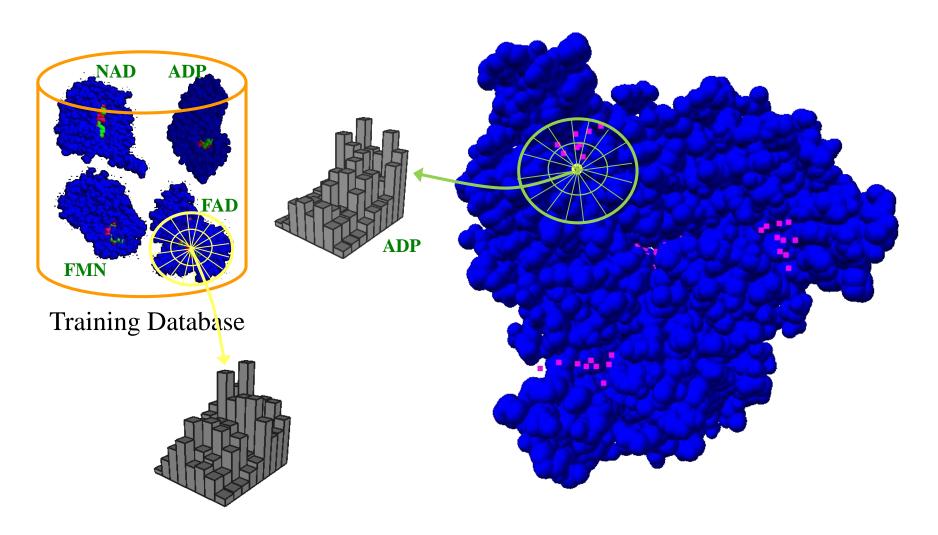
Spherical Harmonic Shape Descriptor

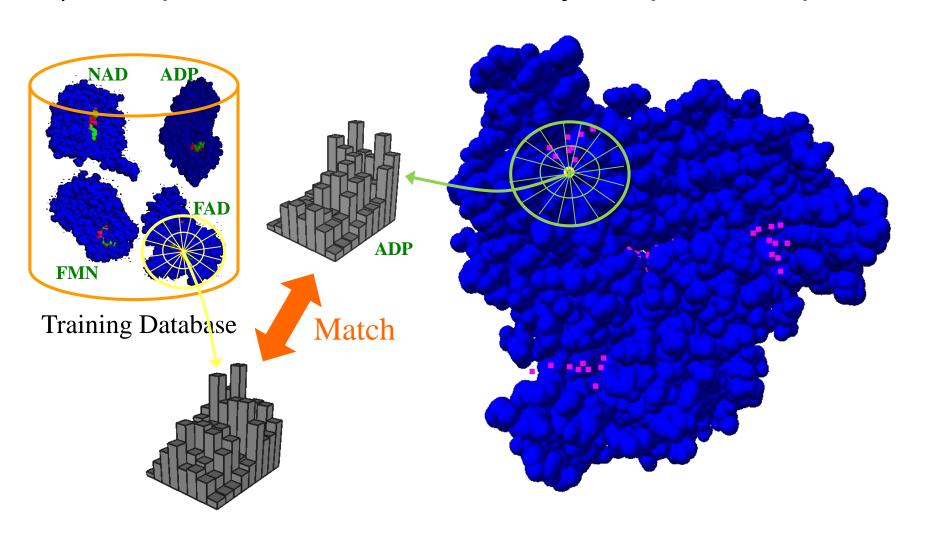
3) Build shape descriptor for every sample location

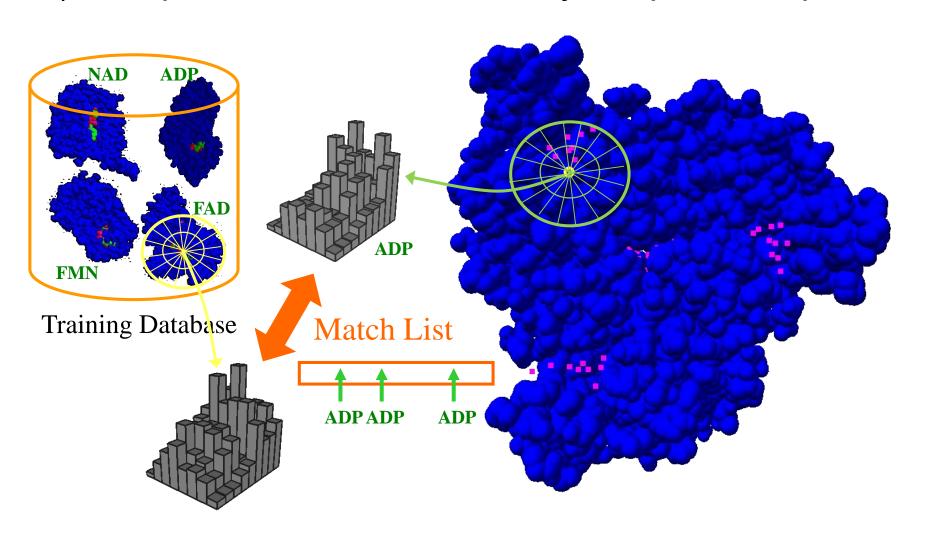


Spherical Harmonic Shape Descriptor

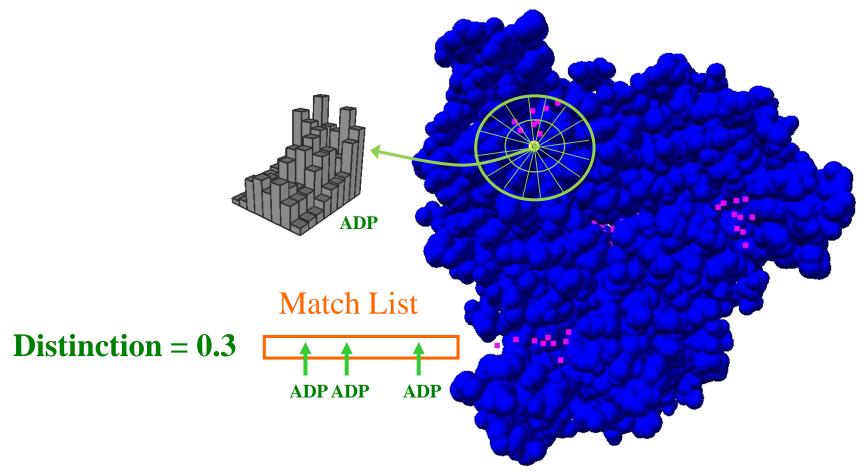






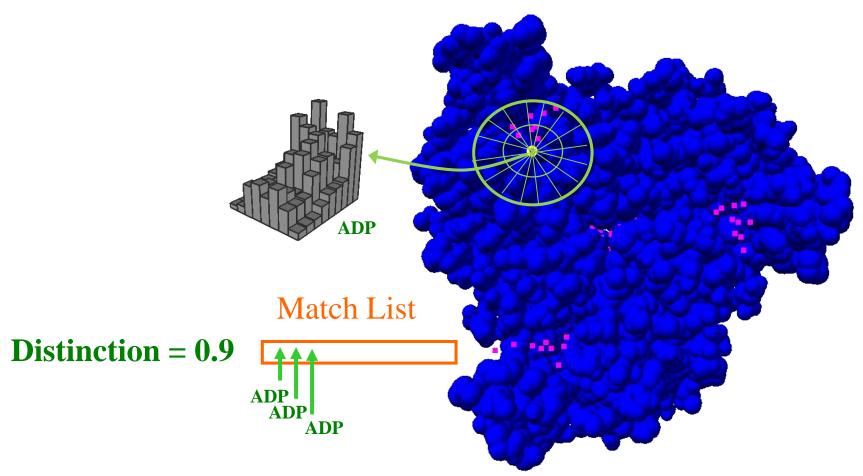


4) Compute "distinction" of every shape descriptor



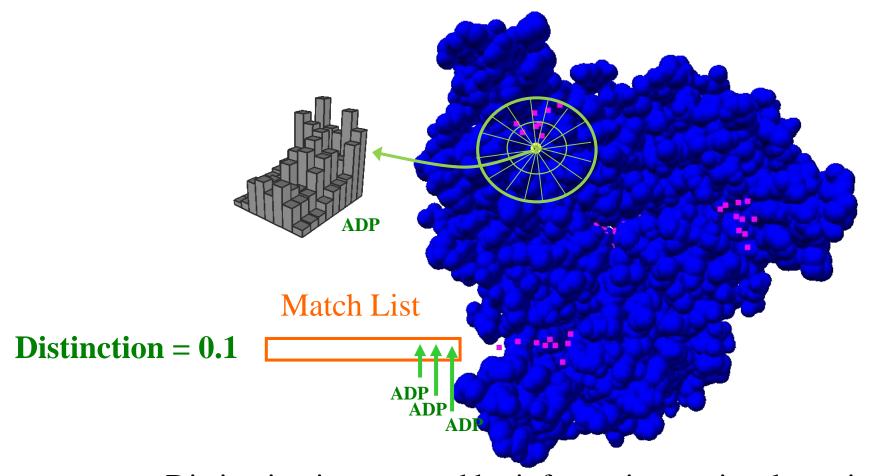
Distinction is measured by information retrieval metric

4) Compute "distinction" of every shape descriptor



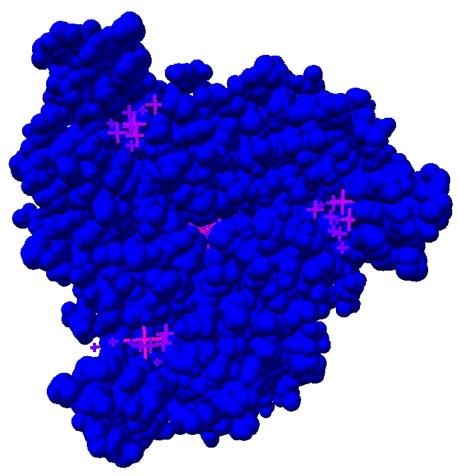
Distinction is measured by information retrieval metric

4) Compute "distinction" of every shape descriptor



Distinction is measured by information retrieval metric

4) Compute "distinction" of every shape descriptor



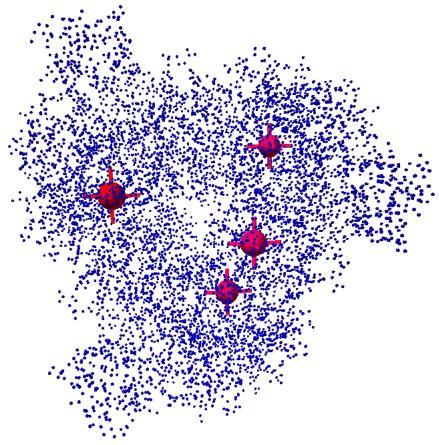
Points shown red/big are most distinctive

4) Compute "distinction" of every shape descriptor



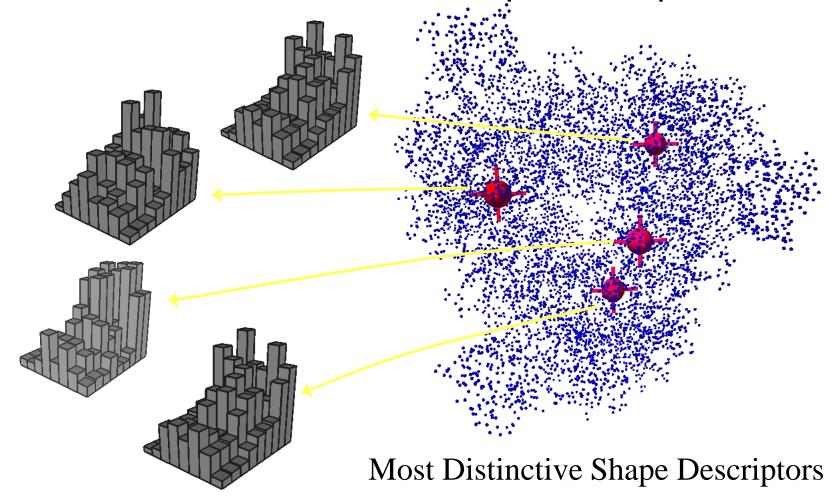
Points shown red/big are most distinctive

4a) Select only the most distinctive shape descriptors

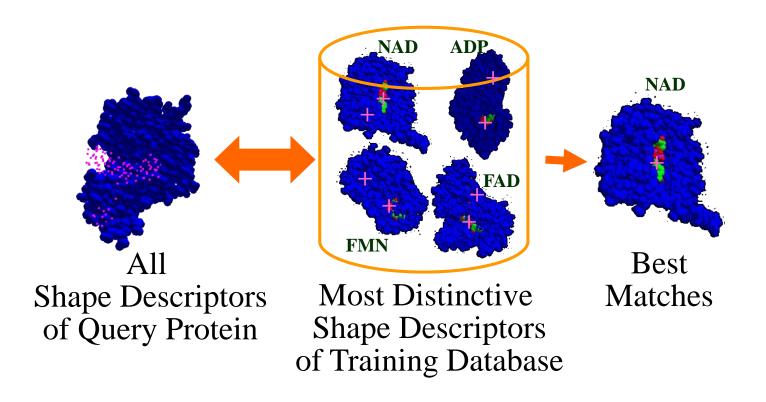


Most Distinctive Shape Descriptors

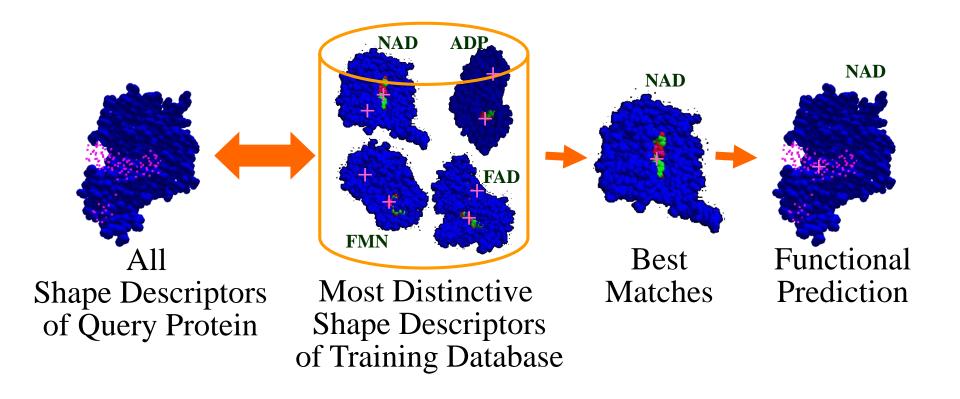
4b) Represent target proteins (in known classes) with small set of distinctive shape descriptors



5) Match all shape descriptors of query protein to most distinctive descriptors of labeled proteins

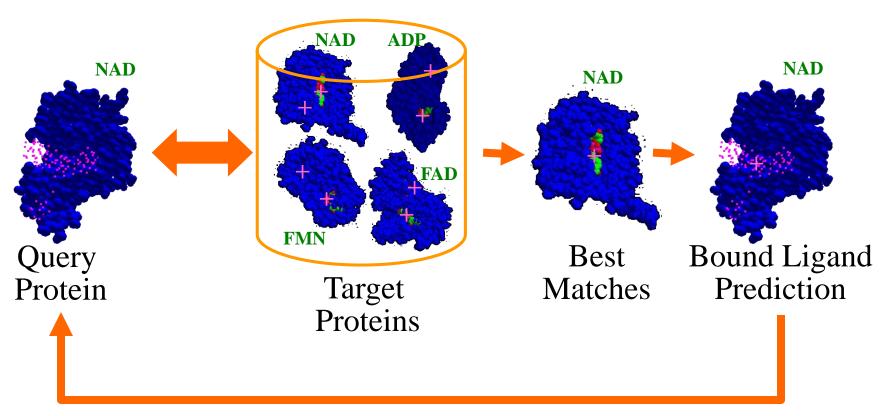


- 6) Make functional prediction based on best matches
  - Nearest neighbor classifier



## **Experiment Design**

Leave-one-out classification experiments



How often does predicted ligand type match?

## **Experimental Data Sets**

## Data Set 1: [Kahraman07]

- 100 nonhomologous proteins with bound ligands in PDB
- 9 ligand types
  - AMP, ATP, FAD, FMN, GLC, HEM, NAD, PO4, Steroid

#### Data Set 2:

- 157 nonhomologous proteins with both bound and unbound structures in PDB
- 17 ligand types, 94 confusers (other ligand types)
  - 5GP, 8HG, A3P, ADP, AMP, ANP, ATP, C8E, GDP, HEM, MAL, NAD, OLA, RBF, SAM, SIA

## Experimental Results – Data Set 1

#### Evaluation of classification performance:

| Algorithm                               | Classification<br>Rate | Preprocessing<br>Time | Query<br>Time |
|-----------------------------------------|------------------------|-----------------------|---------------|
| Proposed<br>Method                      | 68%                    | 150 sec               | 0.001 sec     |
| 12Å descriptor centered on bound ligand | 46%                    | 1 sec                 | 0.001 sec     |
| FASTA                                   | 19%                    | -                     | 2 sec         |
| Random                                  | 12%                    | -                     | _             |

## Experimental Results – Data Set 1

## Effect of selecting distinctive sites:

| Algorithm                          | Classification<br>Rate | Preprocessing<br>Time | Query<br>Time |
|------------------------------------|------------------------|-----------------------|---------------|
| Proposed<br>Method                 | 68%                    | 150 sec               | 0.001 sec     |
| Without Distinctive Site Selection | 13%                    | 150 sec               | 0.1 sec       |

## **Experimental Results – Data Set 2**

Data Set 2 (157 bound and unbound structures):

| Algorithm                       | Classification Rate |     |
|---------------------------------|---------------------|-----|
| Distinctive<br>Site<br>Matching | 63%                 | 61% |
| FASTA                           | 3%                  | 3%  |
| Random                          | 3%                  | 3%  |

\_

Bound Structures



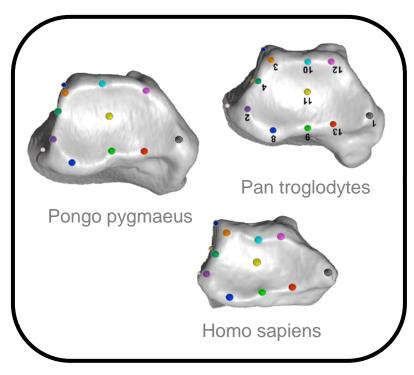
Unbound Structures



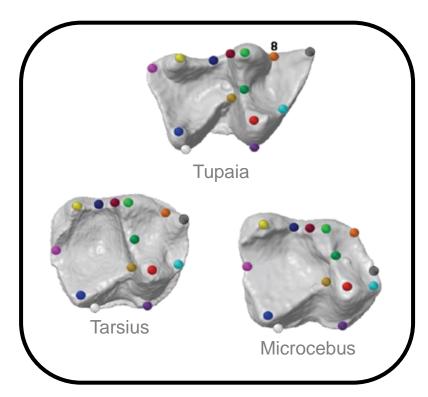
# Paleontology: Matching Fossil Surfaces

## Goal

## Automatically quantify the geometric similarity of anatomical surfaces



**Distal Radius** 



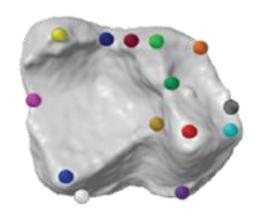
Mandibular Molar

[Boyer, Lipman, St. Clair, Puente, Patel, Funkhouser, Jernvall, and Daubechies, 2011]

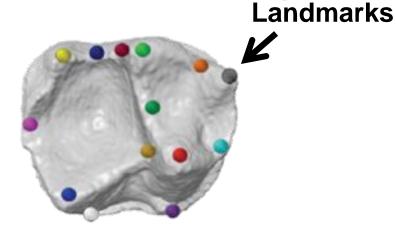
## **Previous Work**

#### Traditional Procrustes distance:

$$d(X,Y) = min_{R} \left[ \left( \sum_{i=1}^{N} ||R(X_{i}) - Y_{i}||^{2} \right)^{1/2} \right]$$



$$\mathbf{X} = \{ \mathbf{X}_{\mathbf{i}} \}$$



Human

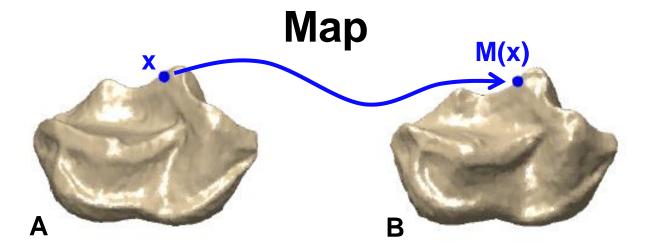
**Specified** 

$$\mathbf{Y} = \{ \mathbf{Y_i} \}$$

## **Target Approach**

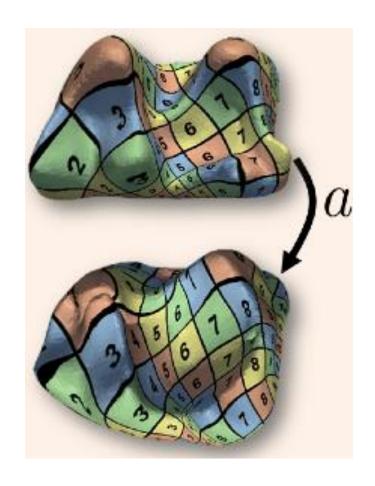
New continuous Procrustes distance:

$$d(A,B) = \min_{R,M} \left[ \left( \int_A \|R(x) - M(x)\|^2 dx \right)^{1/2} \right]$$



## **Surface Matching**

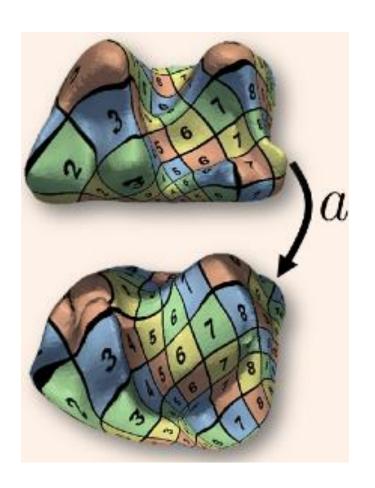
Goal: find map between surfaces



## **Surface Matching**

## Goal: find map between surfaces

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provide metric
- Semantic alignment



## **Applications**

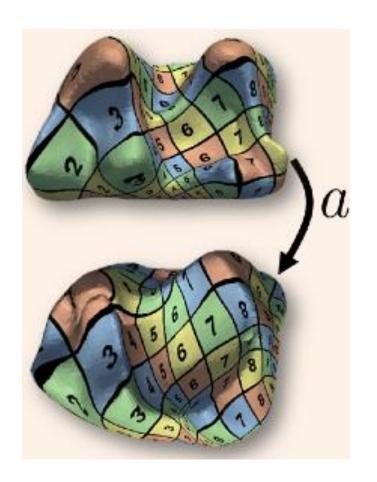
Registration

Comparison

Property transfer

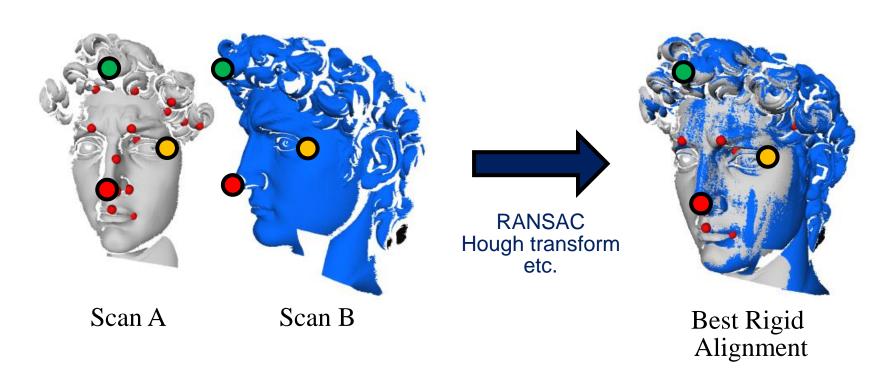
Morphing

etc.



## Possible Approach

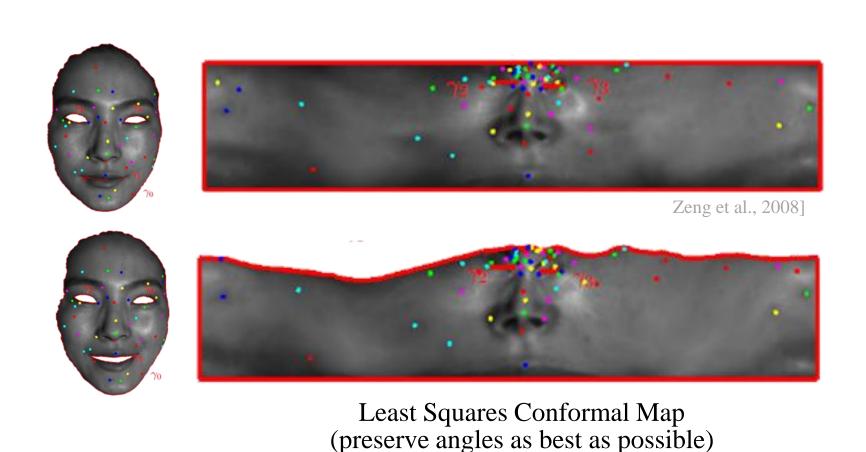
Find feature correspondences and solve for map that best aligns them



Suitable only for "low-dimensional" maps

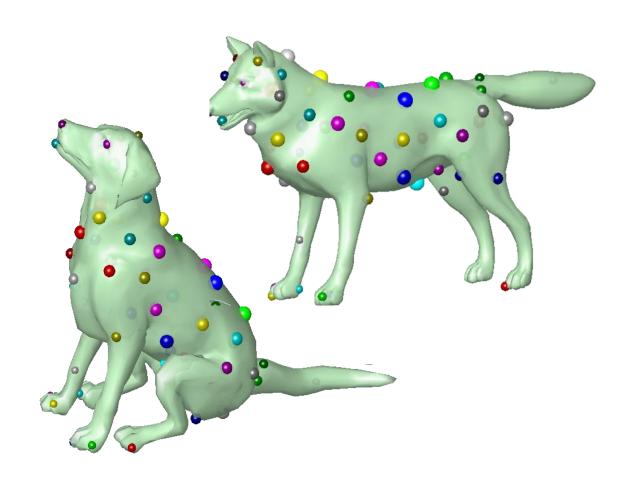
## Challenge

Many feature points are needed for most maps between surfaces



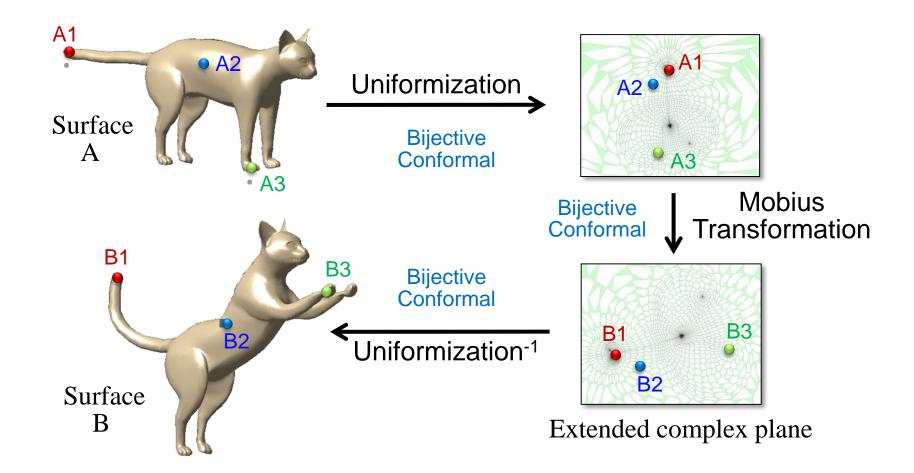
## **Problem**

Automatically finding many correspondences is difficult for surfaces



## **Key Observation**

Any three point correspondences define a bijective, conformal map between genus zero surfaces



## **Key Observation**

We can search for the "lowest distortion" bijective, conformal map between genus zero surfaces using algorithms that sample triplets of correspondences (e.g., RANSAC, Hough transform, etc.)

Polynomial-time algorithm for non-rigid surface mapping

Example: RANSAC algorithm

```
For i = 1 to \sim N^3
```

Sample three points (A1,A2,A3) on surface A

Sample three points (B1,B2,B3) on surface B

Compute conformal map M: (A1,A2,A3)→(B1,B2,B3)

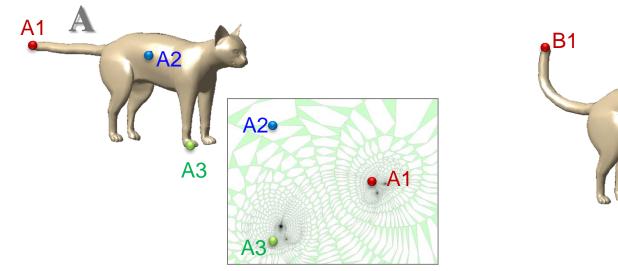
Remember M if distortion is smallest

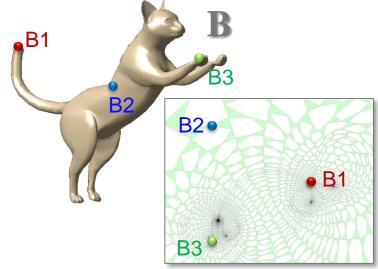
Example: RANSAC algorithm

For i = 1 to  $\sim N^3$ 

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3)→(B1,B2,B3)

Remember M if distortion is smallest



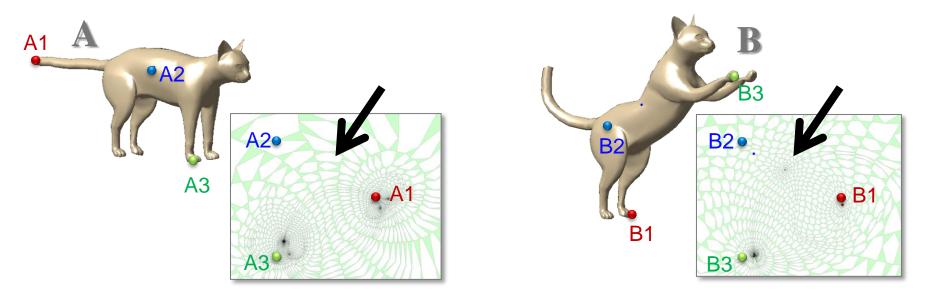


Measure distortion by relative change of area (deviation from isometry)

Example: RANSAC algorithm

For i = 1 to  $\sim N^3$ 

Sample three points (A1,A2,A3) on surface A
Sample three points (B1,B2,B3) on surface B
Compute conformal map M: (A1,A2,A3)→(B1,B2,B3)
Remember M if distortion is smallest



Measure distortion by relative change of area (deviation from isometry)

#### RANSAC algorithm properties:

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provides metric
- Semantic alignment?

### **Experimental Results**

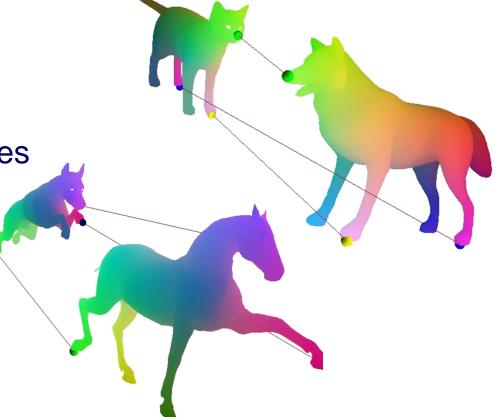
#### Data:

 51 pairs of meshes representing animals from TOSCA and SHREC Watertight data sets

### Methodology:

Predict surface maps

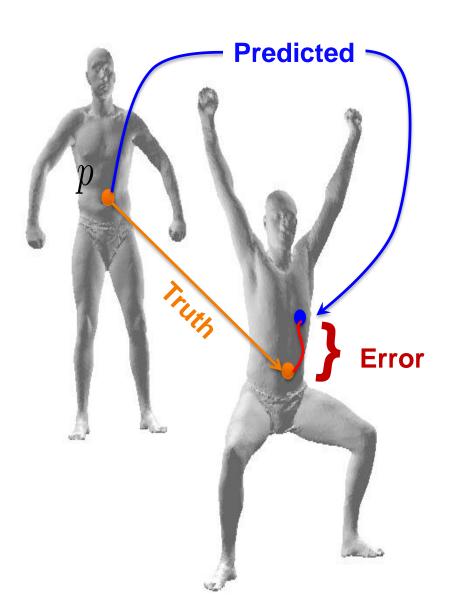
 Compare to ground truth semantic correspondences



### **Experimental Results**

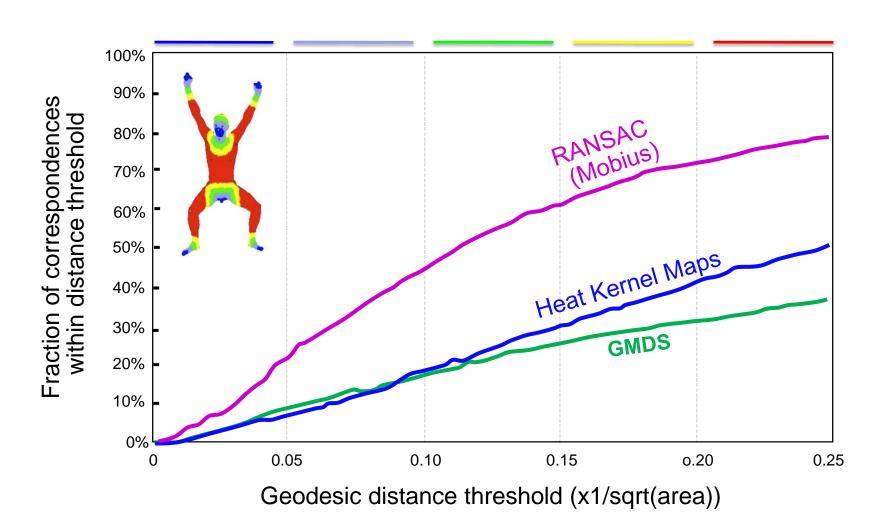
#### **Evaluation:**

- 1. For every point with a ground truth correspondence, measure geodesic distance between predicted correspondence and ground truth correspondence
- 2. Plot fraction of points within geodesic error threshold

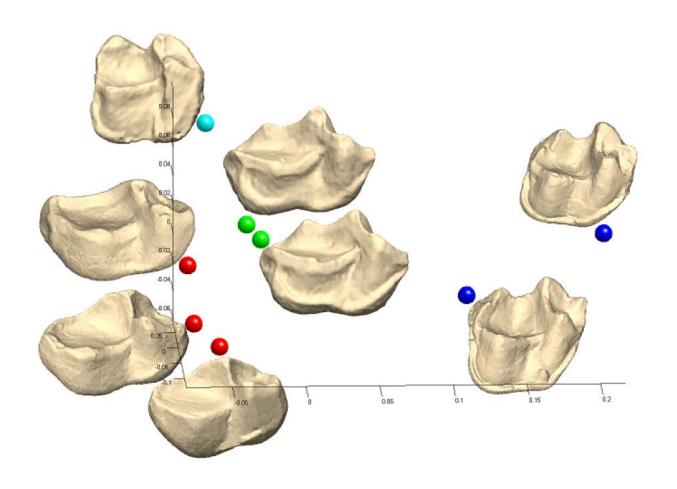


### **Experimental Results**

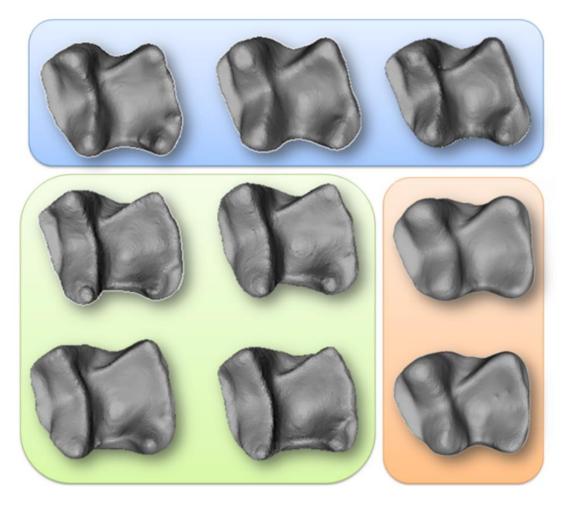
#### Results:



#### Embedding based on new distance



#### Clustering based on new distance



Species Groups of Galaga Genus

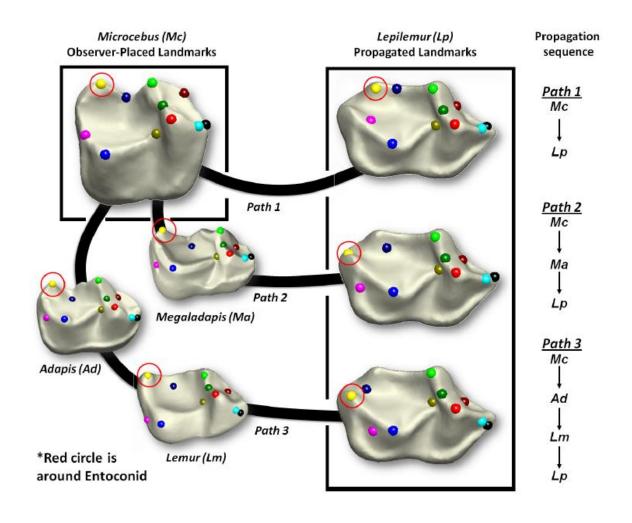
#### Classification based on nearest-neighbors

| Mandibular<br>Molar | # Groups | # Objects | New<br>Distance | Human<br>Landmarks |
|---------------------|----------|-----------|-----------------|--------------------|
| Genus               | 24       | 99        | 90.9%           | 91.9%              |
| Family              | 17       | 106       | 92.5%           | 94.3%              |
| Order               | 5        | 116       | 94.8%           | 95.7%              |

| First<br>Metatarsal | #<br>Groups | # Objects | New<br>Distance | Human1<br>Landmarks | Human2<br>Landmarks |
|---------------------|-------------|-----------|-----------------|---------------------|---------------------|
| Genus               | 13          | 59        | 79.9%           | 76.3%               | 88.1%               |
| Family              | 9           | 61        | 91.8%           | 83.6%               | 93.4%               |
| Superfamily         | 2           | 61        | 100%            | 100%                | 100%                |

| Distal | #      | # Objects | New      | Human     |
|--------|--------|-----------|----------|-----------|
| Radius | Groups |           | Distance | Landmarks |
| Genus  | 4      | 45        | 84.4%    | 77.7%     |

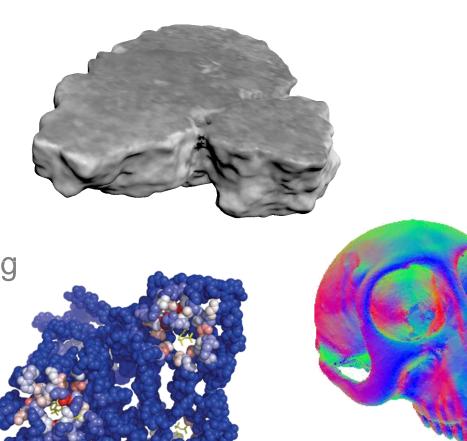
#### Propagating correspondences



### **Summary**

#### Shape matching applications:

- Archaeology
- Molecular biology
- Paleontology
- Neuroscience
- Urban planning
- Numismatics
- Geometric modeling
- Medicine
- Art
- o etc.



### **Summary**

# 3D shape matching uses many of the same techniques as 2D image analysis

- Feature detectors
- Feature descriptors
- Feature matching
- o etc.

#### A Quick Diversion ...

#### Which is harder to recognize by a computer?



3D Model



2D Image

### **Summary**

# 3D shape matching uses many of the same techniques as 2D image analysis

- Feature detectors
- Feature descriptors
- Feature matching
- o etc.

#### except, ...

- Fewer high-frequency features
- More complex topology
- Irregular sampling
- One more dimension
- o etc.

### **Acknowledgments**

#### Archaeology

Brown, Dobkin, Doumas, Garcia-Castelano,
 Rusinkiewicz, Shin, Steiglitz, Strife, Toler-Franklin,
 Vlachopoulos, Weiss, Weyrich

#### Structural bioinformatics

Capra, Glaser, Kahraman, Kazhdan, Lazkowski, Morris,
 Najmanovich, Shilane, Singh, Thornton

#### Paleontology

Boyer, Daubechies, Jernvall, Lipman, Patel, Puente,
 St. Clair