Princeton University
COS429 Computer Vision
Problem Set 2: Reconstructing a Simpler World

In 1966, Seymour Papert wrote a proposal for building a vision system as a summer project
[2]. The abstract of the proposal starts stating a simple goal: “The summer vision project
is an attempt to use our summer workers effectively in the construction of a significant part
of a visual system”. The report then continues dividing all the tasks (most of which also
are common parts of modern computer vision approaches) among a group of MIT students.
This project was a reflection of the optimism existing on the early days of computer vision.
However, the task proved to be harder than anybody expected.

The goal of this assignment is to embrace the optimism of the 60’s and to build an end-to-end
visual system. During this process, we will cover some of the main concepts that will be
developed in the rest of the course.

Problem 1 Making the world simpler

As the visual world is too complex, we will start by simplifying it enough that we will be
able to build a simple visual system right away. This was the strategy used by some of the
first scene interpretation systems. L. G. Roberts [3] introduced the Block World, a world
composed of simple 3D geometrical figures.

For the purposes of this assignment, let’s think of a world composed by a very simple (yet
varied) set of objects. These simple objects are composed of flat surfaces which can be
horizontal or vertical. These objects will be resting on a white horizontal ground plane. We
can build these objects by cutting, folding and gluing together some pieces of colored paper
as shown in Figure 1. Here, we will not assume that we know the exact geometry of these
objects in advance.

Task: Create your own simple world (print Figure 1, mate paper recommend). And take a
picture of the world you created and put it in the report.

Problem 2 Taking orthographic pictures

One of the simplest forms of projection is parallel (or orthographic) projection. In this image
formation model, the light rays travel parallel to each other and perpendicular to the camera
plane. This type of projection produces images in which objects do not change size as they
move closer or farther from the camera, parallel lines in 3D remain appear as parallel lines in
the 2D image. This is different from the perspective projection where the image is formed by
the convergence of the light rays into a single point (focal point). If we do not take special
care, most pictures taken with a camera will be better described by perspective projection
(Figure 2(a)).

Please take pictures with different settings of a camera to create pictures with perspective



Figure 1: A world of simple objects. Print this page with color to make a simple world.



Figure 2: (a) Close up picture without zoom. Note that near edges are larger than far edges,
and parallel lines in 3D are not parallel in the image, (b) Picture taken from far away but using
zoom. This creates an image that can be approximately described by parallel projection.

projection and with orthographic projection. Both pictures should cover the same piece of
the scene.

To create pictures with orthographic projection you can do two things: 1) use the zoom of
the camera, 2) crop the central part of a picture. You will have to play with the distance
between the camera and the scene, and with the zoom (or amount of cropping) so that both
images look as similar as possible only differing in the type of projection (similar to Figure
2).

Task: Submit the two pictures in the report.

Problem 3 Orthographic projection

One way of generating images that can be described by parallel projection is to use the camera
zoom. If we increase the distance between the camera and the object while zooming, we can
keep the same approximate image size of the objects, but with reduced perspective effects
(Figure 2(b)). Note how, in Figure 2(b), 3D parallel lines in the world are almost parallel in
the image (some weak perspective effects remain).

The first step we need to is to characterize how a point in world coordinates (X, Y, Z) projects
into the image plane. Figure 3(a) shows our parameterization of the world and camera. The
camera center is inside the plane X = 0, and the horizontal axis of the camera (z) is parallel
to the ground plane (Y = 0). The camera is tilted so that the line connecting the origin
of the world coordinates system and the image center is perpendicular to the image plane.
The angle 6 is the angle between this line and the Z axis. We will see a more general
projection transformation. The image is parametrized by coordinates (x,y). The center of
the image is at coordinates (zg,yp). The resolution of the image (the number of pixels) will
also affect the transformation from world coordinates to image coordinates via a constant
factor o (we assume that pixels are square and o = 1). Taking into account all these factors,
the transformation between world coordinates and image coordinates can be written as:



Yo

,
%
%
5
©

N EREVEN

Figure 3: A simple projection model. (a) world axis and camera plane. (b) Visualization of
the world axis projected into the camera plane with parallel projection. (c) a 2D profile view
for the geometry.

o

Occlusion

N

Horizontal 3D edge

Change of
surface orientation

Vertical 3D edge

Contact edge

Shadow boundary

Figure 4: Edges denote image regions where there are sharp changes of the image intensities.
Those variations can be due to a multitude of scene factors (occlusion boundaries, changes in
surface orienta- tion, changes in surface albedo, shadows, etc.)

r = aX+ux (1)
= a(cos(0)Y —sin(0)Z) + yo (2)
For this particular parameterization, the world coordinates Y and Z are mixed.
Task: Prove the above two projection equations that relate the coordinates of one point in
the 3D world and the image coordinates of the projection of the point in the camera plane.
Problem 4 Geometric constraints
Part of the simplification of the vision problem resides in simplifying its goals. In this as-

signment, we will focus on recovering the world coordinates of all the pixels seen by the
camera.



Figure 5: Image as a surface. The vertical axis corresponds to image intensity. For clarity
here, I have reversed the vertical axis. Dark values are shown higher than lighter values.

Extracting edges from images FKEdges denote image regions where there are sharp dis-
continuities of the image intensities. The first step will consist in detecting candidate edges
in the image. Here we will start by making use of some notions from differential geometry. If
we think of the image I(x,y) as a function of two (continuous) variables (Figure 5), we can
measure the degree of variation using the gradient:

ol o1
- (& %2
v (ax’ﬁy) (3)

The direction of the gradient indicates the direction in which the variation of intensities is
larger. If we are on top of an edge, the direction of larger variation will be in the direction
perpendicular to the edge.

However, the image is not a continuous function as we only know the values of the I(x,y) at
discrete locations (pixels). Therefore, we will approximate the partial derivatives by:

o~ 1) T Ly) )
I R TR (5)

A better behaved approximation of the partial image derivative can be computed by combining
the image pixels around (z,y) with the weights:

1 -1 0 1
1 x|=2 0 2
-1 0 1

From the image gradient, we can extract a number of interesting quantities:

Edge strength:

E(z,y) = [VI(z,y)| (6)



Input image Gradient (magnitude and orientation)’ Edges

3D orientation Depth discontinuities Contact edges

e

|

-~ T

~
Figure 6: Gradient and edge types.
Edge orientation:
0(z,y) = £LVI = arctan gzgz (7)
The unit norm vector perpendicular to an edge is:
0= 0

The first decision that we will perform is to decide which pixels correspond to edges (regions
of the image with sharp intensity variations). We will do this by simply thresholding the edge
strength E(x,y). In the pixels with edges, we can also measure the edge orientation 0(x,y).
Figure 6 visualized the edges and the normal vector on each edge.

From images to surfaces We want to recover world coordinates X (z,y), Y(z,y) and
Z(z,y) for each image location (z,y). Given the simple image formation model described
before, recovering the X world coordinates is trivial as they are directly observed: for each
pixel with image coordinates (x,y), the corresponding world coordinate is X (z,y) = z. Re-
covering Y and Z will be harder as we only observe a mixture of the two world coordinates
(one dimension is lost due to the projection from the 3D world into the image plane). Here
we have written the world coordinates as functions of image location (z,y) to make explicit
that we want to recover the 3D locations of the visible points. In this assignment, we will
formulate this problem as a set of linear equations.

Figure/ground segmentation In this assignment, deciding if a pixel belongs to one of
the foreground objects or to the background can be decided by simply looking at the color.
(However, in general, the problem of segmenting an image into distinct objects is a very



fEBRESSsP

Figure 7: Generic view, accidental alignments.

challenging task.) We just simply set a threshold on the color to tell the foreground and the
background apart. If we assume that the background corresponds to an horizontal ground
plane, then, for all pixels that belong to the ground we can set Y (z,y) = 0.

Edge classification In this simple world all edges are either vertical or horizontal. Under
parallel projection, we will assume the 2D vertical edges are also 3D vertical edges. Under
parallel projection and with the camera having its horizontal axis parallel to the ground, we
know that vertical 3D lines will project into vertical 2D lines in the image. On the other hand,
horizontal lines will project into oblique lines. Therefore, we can assume than any vertical
line in the image is also a vertical line in the world. As shown in Figure 7, in the case of the
cube, there is a particular viewpoint that will make an horizontal line project into a vertical
line, but this will require an accidental alignment between the cube and the line of sight of
the observer. Nevertheless, this is a weak property and accidental alignments such as this one
can be common. But it will be good enough for the purposes of this assignment. In Figure 6
we show the edges classified as vertical or horizontal using the edge angle. Anything that
deviates from verticality in 15 degrees is labeled as horizontal.

Edge constraint We can now translate the 3D edge orientation into linear constraints. We
will formulate these constraints in terms of Y (z,y).

In a 3D vertical edge, using the projection equations, the derivative of Y along the edge
will be:

dY/oy = 1/cos(h) 9)

In a 3D horizontal edge, the coordinate Y will not change. Therefore, the derivative along
the edge should be zero:

aY/ot = 0 (10)

where the vector t denotes direction tangent to the edge, t = (—ny,n,). We can write this
derivative as a function of derivatives along the z and y image coordinates:

Y /ot = VY -t = —n,dY/0x + n,0Y /0y (11)

When the edges coincide with occlusion edges, special care should be taken so that these
constraints are only applied to the surface that owns the boundary.

Task: In the previous explanation, we have written all the derivative constraints for Y (x,y).
The task for this problem is to write the constraints for Z(x,y) in the report PDF file.



Y (height) Z (depth)

Figure 8: World coordinates corresponding to each image location.

Problem 5 Approximation of derivatives

In the points where there are flat image regions (there are no edges) we do not have enough
information to decide locally what is the surface orientation. Therefore, we need some criteria
in order to propagate information from the boundary (this problem is common in many visual
domains). In this case we will assume that the object faces are planar.

0*Y/oz* = 0 (12)
*Y/oy* = 0 (13)
0*Y/oydxr = 0 (14)

This approximation to the second derivative can be obtained by applying twice the first
order derivative approximated by [-1 1]. The result is: [—1 2 —1] which corresponds to
0%Y/0x? ~ 2Y (x,y) — Y(x + 1,y) — Y(x — 1,y), and similarly for 92Y /9>

Task: The task of this problem is to fill the missing kernels (Lines 171 and 187) in the script:
simpleworldY.m. You should the rest of the code in this file to figure out how everything
works so that you know what to fill in for the missing part. Please copy two lines of code that
you wrote (don’t include the original code we provided) in your report PDF file.

Problem 6 A simple inference scheme

All the different constraints described before can be written as an overdetermined system of
linear equations. Each equation will have the form:

aiY == bi (15)
Note that there might be many more equations than there are image pixels.

We can translate all the constrains described in the previous sections into this form. For
instance, if the index ¢ corresponds to one of the pixels inside one of the planar faces of a fore-
ground object, then the planarity constraint can be written as a; = [0,...,0,—1,2,—1,0,...,0],
b; = 0.

We can solve the system of equations by minimizing the next cost function:

J=> (Y —b;)? (16)

8



o> 85

3

Figure 9: Reconstructed 3D scene structure and synthesis of new viewpoints.

If some constraints are more important than others, it is possible to also add a weight w;.

J = Z wi(a; Y — bi)2 (17)

It is a big system of linear constraints and it can also be written in matrix form:
AY =b (18)

where row ¢ of the matrix A contains the constraint coefficients a;. This problem can be
solved efficiently as the matrix A is very sparse (most of the elements are zero).

Figure 8 shows the world coordinates X (z,v), Y(x,y), Z(x,y) for each pixel. The world
coordinates are shown here as images with the gray level coding the value of each coordinate
(black represents 0). Figure 9 shows the reconstructed 3D scene rendered under different view
points.

Task: Run the code with your answers to the previous questions. Select some of the images
included with the code and show some new view points for them. Take some screen shots and
include in the report PDF file.

Extra Credit [optional] Violating simple world assumptions

We can also run the algorithm with shapes that do not satisfy the assumptions that we have
made for the simple world. Figure 10 shows the impossible steps figure from [1]. Figure 10
shows the reconstructed 3D scene for this unlikely image. The system has tried to approximate

the constraints, as for this shape it is not possible to exactly satisfy all the constraints.

Find one of your images when the recovery of 3D information fails. Explain why it fail.

Extra Credit [optional] The real world

A research problem is a question for which we do not know the answer. In fact, there might
not even be an answer. This question is optional and could be extended into a larger course
project.



& / &

Figure 10: Reconstructed 3D scene structure and synthesis of new viewpoints.

The goal of this problem is to test the 3D reconstruction code with real images. A number
of the assumptions we have made will not work when the input are real images of more
complex scenes. For instance, the simple strategy of differentiating between foreground and
background segmentation will not work with other scenes.

Try taking pictures of real world scenes (not the cubes) and propose modifications to the
scheme proposed in this assignment so that you can get some better 3D reconstructions. The
goal is not to build a general system, but to be able to handle a few more situations.

What to submit: You need to submit two files: one PDF file for the report that contains
your name, Princeton NetID, all the pictures taken and text to answer the questions; one
ZIP file (not RAR or any other format) that contains all source code for your system, and a
“simpleworldY.m” file that takes no parameter as input and run directly in Matlab to generate
the results reported in your PDF file. Both the PDF and ZIP file should be named using
your Princeton NetID underscore cos429ps2. As an example using my account, they should
be named “xj_cos429ps2.pdf” and “xj_cosd29ps2.zip”. To verify your result and detect
plagiarism to make sure there is no cheating, we will use an automatic program to run your
code and compare your code with other students’ (including both this year and all previous
years) and public available implementations (e.g. from Google, Bing, Github). Therefore,
please follow the file format to make our grading job easier. Failure to follow these rules will
result in losing your grade.

Acknowledgement: This assignment is designed based on a related assignment from MIT6.869.

References

[1] Edward H. Adelson. Lightness perception and lightness illusion. In M. Gazzaniga, editor,
The New Cognitive Neurosciences, pages 339-351. 2000.

[2] Seymour Papert. The summer vision project. MIT Al Memo 100, Massachusetts Institute
of Technology, Project Mac, 1966.

[3] Lawrence G. Roberts. Machine Perception of Three-Dimensional Solids. Outstanding
Dissertations in the Computer Sciences. Garland Publishing, New York, 1963.

10



