RVM-++: Relevance Vector Machine in C+-+

XTAO Jianxiong

csxjx@cse.ust.hk

1 Introduction

This project is to implement the Relevance Vector Machine [8, 3, 9, 1] in C+-+
for both classification and regression.

2 Object Oriented Design

The class diagram is listed in Fig. 1. The class RVMmachine represented the
model for training and testing. RVMclassifier and RVMregressor inherit from
RVMmachine by implementing different hyper-parameters estimation function.
A data point is represented by an object of RVMpoint, while a RVMdataset
object contains pointers to multiple RVMpoint objects. A RVMdataset ob-
ject is used as the training dataset for a RVMmachine instant. By calling
RVMmachine::train() function, this training dataset is used to train the model
and the results are a set of weights stored in each RVMpoints in the train-
ing dataset. Then RVMmachine::predictDataset(RVMdataset*) and RVMma-
chine::predictPoint(RVMpoint*) can be called to predict the new label for a
dataset or a single data point. For each RVMmachine instance, a pointer to a
RVMkernel object is maintained. The RVMkernel object represents the kernel
function that is used for both training and testing. RVMkernel contains all pa-
rameters including bias, and uses a function pointer to call the respected kernel
function according to its name.

RVMkernel ~[+—22—— RVMmachine [—**"*—» RVMdatasct |
l : | T

’ RVMclassifier ‘ ’ RVMregressor‘ ’ RVMpoint ‘

Figure 1: Class Relationships

3 Empirical Comparison with SVM classification

To justify the classification quality and sparsity of RVM, we compare our imple-
mentation with LibSVM v2.86 [2] on three real-world datasets from UC Irvine
Machine Learning Repository [5].

3.1 Data Scaling

Scaling the elements in feature vectors before applying RVM or SVM is very
important. The main advantage is to avoid attributes in greater numeric ranges
dominate those in smaller numeric ranges. Another advantage is to avoid numer-
ical difficulties during the calculation. Because kernel values usually depend on
the inner products of feature vectors, e.g. the linear kernel and the polynomial
kernel, large attribute values might cause numerical problems. We recommend
linearly scaling each attribute to the range [—1, +1].

3.2 Testing Dataset

Iris Dataset There are 3 classes and 150 instance in the Iris dataset. In the
experiment, only the Iris Setosa class and Iris Versicolour class are used. And
the total number of instance is 100, 50 for each class. 20 instances are randomly
picked for testing and the remaining 80 instances are used for training. For
both data sets, the first column is the class label, binary {0,1} representing
{Setosa,Versicolour}. The 3rd to 5th column are representing sepal length in
cm, sepal width in cm, petal length in cm, petal width in cm respectively.

Wine Dataset These data are the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the three
types of wines. In the experiment, only class 1 and class 2 are used. 21 instances
are randomly selected for testing and remaining 110 instances for training. For
both data set, the first column is the class label, binary {0,1} representing {class
2, class 1}. For both RVM and SVM, We scale each attribute by shifting the
mean to zero and dividing by the standard deviation.

Image Segmentation Dataset The instances were drawn randomly from
a database of 7 outdoor images. The images were hand segmented to create
a classification for every pixel. The Image data are described by 18 high-level
numeric-valued attributes, 7 classes. In the experiment, only the grass class and
the sky class are used. The training data set is segmentation data.txt, with
60 instances. The testing data set is segmentation test.txt, with 600 instances.
For both data set, the first column is the class label, binary {0,1} representing
{sky, grass}. For both RVM and SVM, We scale each attribute by shifting the
mean to zero and dividing by the standard deviation.

RVM+-+ LIBSVM
Dataset Kernel | # Vectors | Testing Err | # Vectors | Testing Err
Iris +gauss 4 0 10 0
Wine +polyl 2 0 41 0
Image Segmentation | +polyl 1 0 18 0.33%

Table 1: Empirical Comparison with SVM classification on UCI Datasets

3.3 Classification Results

The experiment results are shown in Tab. 1. Notice that for both RVM++
and LIBSVM, we use the same kernel with all default parameters. Specifically,
for Iris dataset, RBF kernel is used, while linear kernel (=degree 1 polynomial
kernel) is used for the other two dataset. The classification performance is
very good for both RVM and SVM. One observation is that the result of RVM
is very sparse comparing with SVM. More interestingly, sometimes there is
no relevance vectors for some class. For example, in the image segmentation
dataset, RVM++ only relies on one relevance vectors which is impossible for
two class classification of SVM. We interpret this as that since RVM is originally
designed for regression, for some class, even without a relevance vector, its
decision boundaries can still recovered by the relevance vectors from other class.

4 TImplementation

4.1 Usage

The basic usage of the classifier and regressor is:

RVMC lassifier Training.file Testing.file Out.file
RVMRegressor Training.file Testing.file Out.file

To have more control of the initial parameters and maximal number of iterations,
you can use:

RVMClassifier Training.file Testing.file Out.file [Kernel=-+gauss Width=.5
InitAlpha=(1/N)~2 MaxIts=500]

RVMRegressor Training.file Testing.file Out.file [Kernel=+gauss Width=.5
InitAlpha=(1/N)"2 InitBeta=STD/10 MaxIts=500]

The set of kernel functions provided in this implementation is listed in Tab.
2. As in [10], let the name of the kernel prefix with '+’ to add bias. For the
(homogeneous) polynomial kernels, the exponent is regarded in the kernel name.
For example, “poly4.0” means the exponent is 4.0 for polynomial kernels.

The file format for both training data and testing data is the same: each
row represents a data point with the first column as its label, second column
indicating the dimension of the feature vectors, and the corresponding feature
vector starting from the third column:

label t; dimension d feature xq feature z; ... feature x4

Notice that there should not be any comment, new line or any visible or
invisible character in the end of the file.

| Choices | Kernel |

gauss Gaussian
laplace Laplacian

poly Polynomial

hpoly Homogeneous Polynomial
cauchy | Cauchy (heavy tailed) in distance
cubic Cube of distance

r Distance

tps "Thin-plate’ spline

bubble Neighbourhood indicator

Table 2: Kernel Choices

4.2 Source Code

This implementation tries to follow the notations used in [1, 10], and also tries
to make the algorithm as close to [1, 10] as possible for easy understanding and
comparison. The pseudo-code for both classification and regression are shown
in Alg. 1 and 2. Comparing with the pseudo-code provided in [4], Alg. 1 and
2 cover every step in greater details. On trick step is that, in classification,
instead of maximizing

N
1
lnp(w(t,a) = Z {tnrIny, + (1 —t,) In (1l —y,)} — inAw + const,
n=1

its inverse J = —Inp(w|t,«) is minimized by Iterative Reweighted Least
Squares (IRLS).

The codes of Gauss-Jordan elimination, Cholesky decomposition and PostScript
plotting are modified and based on the codes offered in the book [6]. The ker-
nel functions are in the file “RVMfunc.h” and “RVMfunc.cpp”. To let the RVM
support different types of features such as Graph kernels, you may change them
and modified the definition of the class RVMpoint correspondingly. And except
the initial «, § and maximal iterations allowed, other default parameters are
all located in the file “RVMconstant.h” which can be easily changed.

Algorithm 1 Pseudo-code for RVM Classification Training

Require: A data matrix X € R™*" t € {0,1}" and initial value

Require: The maximum number of iterations . and kmax

Require: A tolerance for pruning TOL € RT, and minimal In « change 6,
1: w0

2: & — k (X, X) > The design matrix @,,; := ¢; (xy,)
3: fori=1,...,imax do
4: n=(je{l,...,n}|a; <TOL) > All non-pruned indices
5: ®,, € R™*Inl .= & (n) contains the |n| columns from ® indexed by n
6: oy = a(n),w, :=w(n)
7: A — diag (o), y < sigmoid (P, wy)
8: J— = EnN:1 {talnyn + (1 —t,)In (1 —yn)} + 2w Awy
9: for k=1,..., kpax do > Iterative Reweighted Least Squares
10: e—t—y, b :=y;(1—-y;), B« diag(b)
11: g— —VJ=&le— Aw, > Negative Gradient of J
12: if 18l < ¢ then
13: break
14: end if
15: H«— VVJ=®.B®, +A > Hessian of .J
16: Cholesky Decomposition H = UTU
17: A—TU! (U*Tg) >A:=Hlg
18: A1
19: repeat
20: W — Wy + AA
21: y < sigmoid (®,W)
22: J e =N {tylny, + (1 —t,)In(1 —y,)} + iwTAW
23: A3
24: until J < J > To minimize J and to maximize Inp (wq|t, an)
25: Wn — W, J — J
26: end for
o BN —(VVJ) ' =H!
28: for all j € n do
29: v — 1 — o355, a?ld —
30: if i < imax/2 then
31: oy — /w3 > MacKay-style update|8]
32: else
33: Qg — (wjz/'yj — Ejj)fl > Speed up by hybrid update[3]
34: end if
35: §; « |In (o) —In (a?ld)|
36: end for
37: if max; {d;} < Omin then
38: break
39: end if
40: end for

Algorithm 2 Pseudo-code for RVM Regression Training

Require: A data matrix X € R™*", t € R™ and initial value «, 3

Require: The maximum number of iterations iy

Require: A tolerance for pruning TOL € R™, and minimal In o change 6
1: w0

2: ® — x(X,X) > The design matrix ®,; := ¢; (x,,)
3: fori=1,...,in.x do

4: n=(je{l,...,n}|a; <TOL) > All non-pruned indices
5: ®,, ¢ R™*Inl .= & (n) contains the |n| columns from ® indexed by n
6: ap = a(n),wy, :=w(n)

7 A — diag (o), y — ®Pnwn

88 H<—pe e, +A

9: Cholesky Decomposition H = UTU

100 XY UTU"T >X=H"!
11: wp — fE®Lt

122 e« ||t — ®uwy’

13: for all j e ndo

14: Vi 1-— Oéijj, Oé?ld — Oy

15: if i < imax/2 then

16: Q — 'yj/w]z > MacKay-style update[8]
17: else

18: aj — (w3 /v — ij)_l > Speed up by hybrid update[3]
19: end if
20: §; — |In(ay) —In (oz;-’ld)|
21: end for
2w B (N—X,) fe
23: if max; {d;} < Omin then
24: break
25: end if
26: end for

5 Demo: 2D Classification

This demo is to train a classifier on Ripley’s synthetic data! from [7]. You
can run the program in “bin” directory. The PostScript plot named “classi-
fication2d _demo_ plot.ps” will be stored in the same directory at the end of
the program. If you are in Windows environment, GSView in “C:\Program
Files\ Ghostgum) gsview'\gsview32.exe” will automatically open to show the plot-
ted figure as in 2. The decision boundaries, 0.25 and 0.75 confidence contour
are all plotted. And the two class data points are plotted as triangle and circle
ball, while relevant vectors are braced by a square.

x(1)

x(0)

Figure 2: 2D Classification Demo. The middle curve is the decision boundary
for separating the two classes. And the other two curves are the contour corre-
sponding to 25% and 75% pobability. And the two class data points are plotted
as triangle and circle ball, while relevant vectors are braced by a square.

6 Demo: 1D Regression

This demo is to train a regressor on a noisy ’sinc’ data with 100 data points.
You can run the program in “bin” directory. The PostScript plot named “re-
gressionld _demo_plot.ps” will be stored in the same directory at the end of
the program. If you are in Windows environment, GSView in “C:\Program
Files\ Ghostgum) gsview'\gsview32.exe” will automatically open to show the plot-
ted figure as in 3. The regression curve generated by the RVMregressor is plot-
ted with the input noise data point, while the relevant vectors are braced by a
square.

! Available for download from http://www.stats.ox.ac.uk/pub/PRNN/

Figure 3: 1D Regression Demo.

7 Conclusion

This report details several aspects of the implementation of the Relevance Vector
Machine in C++. An empirical comparison with SVM for classification is also
presented. Since all matrix operations are just coded in very intuitive way,
the speed of the implementation is quite slow. As a future work, the matrix
operations will be replaced by calling some highly optimized matrix libraries
such as BLAS, LAPACK, ATLAS or GotoBLAS, which are extensively used in
Matlab™.

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. http://www.csie.ntu.edu.tw/"cjlin/libsvm/.

[3] Anita C. Faul and Michael E. Tipping. Analysis of sparse bayesian learning.
In In Proceedings of Neural Information Processing Systems, 2001.

[4] Ralf Herbrich. Learning Kernel Classifiers: Theory and Algorithms. The
MIT Press, 2002.

[5] UC Irvine. Uc irvine machine learning repository. http://archive.ics.
uci.edu/ml/.

[6]

7]

8]

9]

[10]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, third edition edition, 2007.

B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge Uni-
versity Press, 1996.

Michael E. Tipping. The relevance vector machine. In In S. A. Solla,
T. K. Leen, and K.-R. Miiller, editors, Advances in Neural Information
Processing Systems 12, volume 12, pages 652—-658. The MIT Press, 2000.

Michael E. Tipping. Sparse bayesian learning and the relevance vector
machine. Journal of Machine Learning Research, 1:211-244, 2001.

Michael E. Tipping. SparseBayes: A matlab implementation of sparse
bayesian learning. http://www.miketipping.com/index.php?page=rvm,
2002.

