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Scene Viewpoint Recognition

We introduce the problem of scene viewpoint recognition, the
goal of which is to classify the type of place shown in a photo,
and also to recognize the observer’s viewpoint within that cat-
egory of place.
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Despite belonging to the same place category (e.g., theater), the
photos taken by an observer inside a place look very different
from different viewpoints.
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We design a model that, given a photo, can classify its place cat-
egory and predict the direction in which the observer is facing
within that place. Once we have a compass-like prediction of the
observer’s viewpoint, we superimpose the photo onto an aver-
aged panorama of the place category to automatically predict
the possible layout that extends beyond the available field of
view.

SUN360 Panorama Database

We construct a panorama database for training, because panora-
mas densely cover all possible views within a place.
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80 place categories and 67,583 panoramas (resolution 9104x4552)

Recognizing Scene Viewpoint using Panoramic Place Representation

Jlanxiong Xiao

Krista A. Eninger

Place Categorization & Viewpoint Recognition

Step 0: Sample Normal Photos from Panorama
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Step 1: Place Categorization
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Step 2: Simultaneously Align Panoramas and Train Viewpoint Classifier

P VO DD

N

\

Analysis: Maximum-likelihood Interpretation
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Definition of Scenes
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lllustration: Algorithm Behavior for street.
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(@) Training strategies. (b) Different symmetries. (c) Angle deviation.

Place + Viewpoint vs. Traditional Labels
theater Theater-related Categories in SUN: Type | @ O O O O O O
0 stage/indoor
theater/indoor_seats T ! AB
theater/indoor_round yP€ “
theater/indoor_procenium
orchestra_pit T 0 AB
catwalk yp€ s
What about unnamable viewpoints? Type IV %

Symmetry Discovery & View Sharing
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Canonical View of Scenes

. . . . . Target view Panorama
We study the canonical views of different place categories, i.e. the
viewpoints people most often choose when they take a photo of a
particular type of place. We obtain ground-truth viewpoint informa-
tion for normal limited-field-of-view photos from the SUN database
[1] by running a view-matching task on Amazon Mechanical Turk. View Matching Task
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To further illustrate how each view is

correlated with specific scene cat-
egories, we run the scene category _

. i e R
classifier from [1] on normal photos e g i e
extracted from the panoramas.

subway station/platform desert/sand islet construction site

Evaluations

Manual Alignment Automatic Alignment

Test Set | Accuracy 1| Accuracy 2 Accuracy Angle Deviation
Place|Both|Place|Both|Place| View [Both| | 1 [Iv |
SUN360 | 48.4| 27.3| 519 23.8( 51.9( 50.2 | 24.2| 55°| 51°| 86° |90° 08:
SUN 222 145( 24.1| 13.0] 24.1| 55.7] 13.9| 29°| 30° | 38°|90° ...
Chance| 3.8 | 03 [ 3.8 [ 0.3 | 3.8 | 83 | 0.3 190°|90° [90° |90° o\

Because the alignment was unsuper-
vised, we use an oracle to assign each
aligned viewpoint to one of the view
directions from the ground truth and
evaluate accuracy based on the result-
Ing viewpoint-to-viewpoint mapping.

Evaluation | HOG-S |HOG-L | Tiny [HOG2 x2| COM | Final | Chance we
Accuracy 41.8 45.0 25.9 56.4 62.2 | 69.3 8.3
Deviation | 65.6° | 62.5° | 73.4° 48.0° 41.4° | 34.9°] 90.0°

(a) Test on SUN360 Panorama Dataset.

(b) Test on SUN Dataset.
Viewpoint prediction accuracy.
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Database + Source Code
http://sun360.mit.edu

Results

Image Extrapolation
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