Autoencoders

David Dohan
Unsupervised Deep Learning

• So far: supervised models
 • Multilayer perceptrons (MLP)
 • Convolutional NN (CNN)
• Up next: unsupervised models
 • Autoencoders (AE)
 • Deep Boltzmann Machines (DBM)
The Goal

• Build high-level representations from large unlabeled datasets

• Feature learning

• Dimensionality reduction

• A good representation may be:
 • Compressed
 • Sparse
 • Robust
Hierarchical Representation

Layer 3
Parts combine to form objects

Layer 2

Layer 1

High-level linguistic representations

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction
The Goal

- Uncover implicit structure in unlabeled data
- Use labelled data to finetune the learned representation
 - Better initialization for traditional backpropagation
 - Semi-supervised learning
Manifold Hypothesis

- Realistic data clusters along a manifold
- Natural images v. static
- Discovering a manifold, assigning coordinate system to it
Manifold Hypothesis

- Realistic data clusters along a manifold
- Natural images v. static
- Discovering a manifold, assigning coordinate system to it
Principal Component Analysis

Reduce dimensions by keeping directions of most variance

Direction of first principal component i.e. direction of greatest variance
Principal Component Analysis

Given $N \times d$ data matrix X, want to project using largest m components

1. Zero mean columns of X
2. Calculate SVD of $X = U\Sigma V$
3. Take W to be first m columns of V
4. Project data by $Y = XW$

Output Y is $N \times m$ matrix
Autoencoder Structure

- Input, hidden, output layers
- Learning *encoder* to and *decoder* from feature space
- Information bottleneck
Shallow Autoencoder

- AE with 2 hidden layers
- Try to make the output be the same as the input in a network with a central bottleneck.

- The activities of the hidden units in the bottleneck form an efficient code.
- Similar to PCA if layers are linear.
Encoder: \[h_j = \frac{1}{1 + \exp(-\sum_i v_i W_{ij})}, \quad j = 1, \ldots, K. \]

Decoder: \[\hat{v}_i = \frac{1}{1 + \exp(-\sum_j h_j W_{ij})}, \quad i = 1, \ldots, D. \]
Shallow Autoencoder

Minimize reconstruction error:

\[
\min_{W} \text{Loss}(v, \hat{v}, W) + \text{Penalty}(h, W)
\]

Loss functions: cross-entropy or squared loss.

Typically, one imposes \(l_1 \) regularization on hidden units \(h \) and \(l_2 \) regularization on parameters \(W \) (related to sparse coding).
Deep Autoencoder

- Non-linear layers allow an AE to represent data on a non-linear manifold

- Can initialize MLP by replacing decoding layers with a softmax classifier
Training Autoencoders

- Backpropagation
- Trained to approximate the identity function
- Minimize reconstruction error

Objectives:
- Mean Squared Error: $\|v - \hat{v}\|^2$
- Cross Entropy:

$$\sum_{k=1}^{d} [v_k \log \hat{v}_k + (1 - v_k) \log (1 - \hat{v}_k)]$$
Reconstruction Example

Data
30-D AE
30-D PCA
Learned Filters

- Each image represents a neuron
- Color represents connection strength to that pixel
- Trained on MNIST dataset
Learned Filters

- Trained on natural image patches
- Get Gabor-filter like receptive fields
Deep Autoencoder

- Face “vanishing gradient” problem
- Solution: Greedy layer-wise pretraining
 - First approach used RBMs (Up next!)
 - Can initialize with several shallow AE
Denoising Autoencoder

- Want to prevent AE from learning identity function
- Corrupt input during training
 - Still train to reconstruct input
 - Forces learning correlations in data
- Leads to higher quality features
- Capable of learning overcomplete codes
Denoising Autoencoder

Web Demo
Whitening

- AE work best for data with all features equal variance
- PCA whitening
 - Rotate data to principal axes
 - Take top K eigenvectors
 - Rescale each feature to have unit variance

Implementation Details
Additional Resources

- Unsupervised Feature Learning and Deep Learning Tutorial
 - http://ufldl.stanford.edu/wiki/
 - deeplearning.net
 - deeplearning.net/tutorial/
- Thorough introduction to main topics in deep learning
Deep Boltzmann Machines

David Dohan
Generative Models

- Discriminative models learn $p(y \mid x)$
 - Probability of a label given some input
- Generative models instead model $p(x)$
- Sample model to generate new values
Boltzmann Machines (BM)

- Visible and hidden layers
- Stochastic binary units
- Fully connected
- Undirected
- Difficult to train
Energy of a Joint Configuration

\[-E(v, h, \theta) = \sum_{i,j} W_{ij} v_i h_j + \sum_{i<j} W_{ij} v_i v_j + \sum_{k<l} W_{kl} h_k h_l + \sum_{i} b_i v_i + \sum_{j} c_j h_j\]

- v_i, h_i are binary states
- Notice that the energy of any connection is local
 - Only depends on connection strength and state of endpoints
Energy Based Models

- Assign an energy to possible configurations
- For no connections, map to probability with:

\[P(v) = \frac{e^{-E(v)}}{\sum_v e^{-E(v)}} \]

- \(v \) is a vector representing a configuration
- Denominator is normalizing constant \(Z \)
 - Intractable in real systems
 - Requires summing over \(2^n \) states
- Low energy \(\rightarrow \) high probability
Energy Based Models

- Use hidden units to model more abstract relationships between visible units
- With hidden units and connections:

\[P(v) = \frac{\sum_h e^{-E(v,h,\theta)}}{\sum_{v,h} e^{-E(v,h,\theta)}} \]

- \(\theta \) is model parameters (e.g. connection weight)
- \(v, h \) vectors representing a layer configuration
- Similar form to Boltzmann distribution, therefore Boltzmann machines
Energy Based Models

\[P(v) \propto \sum_h e^{-E(v,h,\theta)} \]

- This is equivalent to defining the probability of a configuration to be the probability of finding the network in that configuration after many stochastic updates.
Hidden Variables

- Latent factors/explanations for data
- Example: movie prediction
Restricted BM (RBM)

- Remove visible-visible and hidden-hidden connections
- Hidden units conditionally independent given visible units (and vice-versa)
 - Makes training tractable
Energy of an RBM

- For n visible and m hidden units
- W is $n \times m$ weight matrix
- θ denotes parameters W, b, c

\[-E(v, h, \theta) = \sum_{i,j} W_{ij} v_i h_i + \sum_i b_i v_i + \sum_j c_j h_j\]

\[= v W h^\top + b v^\top + c h^\top\]

- b, v length n row vectors
- c, h length m row vectors
- Equation represents:

 \((\text{vis} \leftrightarrow \text{hid}) + \text{visible bias} + \text{hidden bias}\)
Inference in RBMs

- Conditional distribution of visible and hidden units given by

\[p(v_i = 1 | h) = \sigma(b_i + \sum_j h_j W_{ij}) \]

\[p(h_j = 1 | v) = \sigma(c_j + \sum_i v_i W_{ij}) \]

- Each layer distribution completely determined given other layer
 - Given \(v \), \(p(h_j = 1 | v) \) is exact
RBM Training

\[
P_{\text{model}}(v) = \sum_h P(v, h) = \frac{1}{\mathcal{Z}} \sum_h \exp \left(\sum_{ij} v_i h_j W_{ij} \right)
\]

- Maximizing likelihood of training examples \(v \) using SGD

\[
\frac{\partial \log P(v)}{\partial W_{ij}} = \mathbb{E}_{P_{\text{data}}} [v_i h_j] - \mathbb{E}_{P_{\text{model}}} [v_i h_j] = \langle v_i h_j \rangle_{\text{data}} - \langle v_i h_j \rangle_{\text{model}}
\]

- First term is exact
 - Calculate \(p(h_j = 1|v) \) for every example
- Second term must be approximated
• Consider the gradient of a single example \mathbf{v}

\[
\frac{\partial \log P(\mathbf{v})}{\partial W_{ij}} = \mathbb{E}_{P_{data}}[v_i h_j] - \mathbb{E}_{P_{model}}[v_i h_j]
\]

• First term is exactly $\sigma(c_j + \sum_i v_i W_{ij}) v_i$

• Approximate second term by taking many samples from model and averaging across them
RBM Training

• Bias terms are even simpler
 • Treat as a unit that is always on

\[
\frac{\partial \log P(v)}{\partial b_i} = \langle v_i \rangle_{data} - \langle v_i \rangle_{model}
\]

\[
\frac{\partial \log P(v)}{\partial c_j} = \langle h_j \rangle_{data} - \langle h_j \rangle_{model}
\]
Sampling in an RBM

- Approximate model expectation by drawing many samples and averaging

\[p(v_i = 1|h) = \sigma(b_i + \sum_j h_j W_{ij}) \]

\[p(h_j = 1|v) = \sigma(c_j + \sum_i v_i W_{ij}) \]

- Stochastically update each unit based on input

- Initialize randomly
Sampling in an RBM

- Update each layer in parallel
 \[p(v_i = 1|\mathbf{h}) = \sigma(b_i + \sum_j h_j W_{ij}) \]
- Alternate layers
 \[p(h_j = 1|\mathbf{v}) = \sigma(c_j + \sum_i v_i W_{ij}) \]
- Known as a markov chain or fantasy particle
Contrastive Divergence (CD)

- Reaching convergence while sampling may take hundreds of steps
- K step contrastive divergence (CD-k)
 - Use only k sampling steps to approximate the expectations
 - Initialize chains to training example
- Much less computationally expensive
- Found to work well in practice
Algorithm 1 Calculating gradients given data and RBM parameters using CD-1

procedure RBMGRADIENT\((v_{pos}, W, b, c)\)

\[N \leftarrow \# \text{ examples in } v_{pos} \]

\[h_{pos} \leftarrow S(v_{pos} W + c) \]

\[h_{state} \leftarrow \text{sample from } h_{pos} \]

\[v_{neg} \leftarrow \text{sample from } S(h_{state} W^\top + b) \]

\[h_{neg} \leftarrow S(v_{neg} W + c) \]

\[\Delta W \leftarrow \frac{1}{N}(v_{pos}^\top h_{pos} - v_{neg}^\top h_{neg}) \]

\[\Delta b \leftarrow \text{column_means}(v_{pos} - v_{neg}) \]

\[\Delta c \leftarrow \text{column_means}(h_{pos} - h_{neg}) \]

return \(\Delta W, \Delta b, \Delta c\)

end procedure

Notice that \(h_{pos}\) is real valued while \(v_{neg}\) is binary
Algorithm 2 Basic RBM training using stochastic gradient descent

procedure TRAINRBM(data, ϵ, n_v, n_h, n_{epoch}, batchsize)

 $W \leftarrow$ matrix of size $n_v \times n_h$
 $b \leftarrow$ vector of size n_v
 $c \leftarrow$ vector of size n_h
 $N \leftarrow \#$ examples in data
 for all $1, \ldots, n_{epoch}$ do
 for all $mb \in 1, \ldots, \left\lfloor \frac{N}{\text{batchsize}} \right\rfloor$ do
 batch \leftarrow data$[mb \cdot \text{batchsize} : (mb + 1) \cdot \text{batchsize}]$
 $\Delta W, \Delta b, \Delta c \leftarrow$ RBMGRADIENT(batch, W, b, c)
 $W \leftarrow W + \epsilon \Delta W$
 $b \leftarrow b + \epsilon \Delta b$
 $c \leftarrow c + \epsilon \Delta c$
 end for
 d \leftarrow shuffle order of d
 end for
 return (W, b, c)
end procedure
Persistent CD (PCD)

- Markov chains persist between updates
- Allows chains to explore energy landscape
- Much better generative models in practice

(a) Example MNIST training data

(b) Samples drawn from a model trained with CD
(c) Samples drawn from model trained with PCD
Persistent CD (PCD)

- In CD, # chains = batch size
 - Initialized to data in the batch
- Any # of chains in PCD
 - Initialized once, allowed to run
 - More chains lead to more accurate expectation

(a) Example MNIST training data

(b) Samples drawn from a model trained with CD

(c) Samples drawn from model trained with PCD
KL Divergence

- Measure of difference between probability distributions
- CD learning minimizes KL divergence between data and model distributions
- NOT the log likelihood
Deep Belief Networks (DBNs)

- Limitations on what a single layer model can efficiently represent
- Want to learn multi-layer models
- Create a stack of easy to train RBMs
Greedy layer-wise Pretraining

Greedy layer-by-layer learning:

- Learn and freeze W^1

- Sample $h^1 \sim P(h \mid v, W^1)$
 treat h^1 as if it were data

- Learn and freeze W^2

- …

- Repeat
Greedy Layer-wise Pretraining

- Each extra layer improves lower bound on log probability of data

- Additional layers capture higher-order correlations between unit activities in the layer below
Deep Belief Networks (DBNs)

- Top two layers from an RBM
- Other connections directed
- Can generate a sample by sampling back and forth in top two layers before propagating down to visible layers
Greedy Layer-wise Pretraining

Web Demo
Deep Boltzmann Machines

- All connections undirected
- Bottom-up and top-down input to each layer
- Use layer-wise pretraining followed by joint training of all layers
Pretraining DBMs

- Layerwise pretraining
- Must account for input doubling for each layer
Joint Training of DBMs

- Pretraining initializes parameters to favorable settings for joint training
- Update equations take same basic form:

\[\langle \cdot \rangle_{\text{data}} - \langle \cdot \rangle_{\text{model}} \]

- Model statistic remains intractable
 - Approximate with PCD
- Data statistic, which was exact in the RBM, must also be approximated

\[\frac{\partial \log P(v)}{\partial W_{ij}} = \langle v_i h_j \rangle_{\text{data}} - \langle v_i h_j \rangle_{\text{model}} \]
Data Dependent Statistic

- No longer exact in DBM
- Approximate with mean-field variational inference
- Clamp data, sample back and forth in hidden layers
- Use expectation instead of binary state
Model Dependent Statistic

- Approximate with gibbs sampling as in an RBM
- Always use PCD
- Alternate sampling even/odd layers
Finetuning for Classification

- Can use to initialize MLP for classification
- Ideal with lots of unsupervised and little supervised data
Semi-supervised Learning

- Makes use of unlabelled data together with some labelled data
- Initialize by training a generative model of the data
- Slightly adjust for discriminative tasks using the labelled data
- Most of the parameters come from generative model
Sparsity

- Hidden units that are rarely active may be easier to interpret or better for discriminative tasks
- Add a “sparsity penalty” to the objective
 - Target sparsity: want each unit on in a fraction p of the training data
 - Actual sparsity $q_{new} = \lambda q_{old} + (1 - \lambda) q_{current}$

Sparsity penalty $\propto -p \log q - (1 - p) \log(1 - q)$

- Used to adjust bias and weights for each hidden unit
Initializing Autoencoders
Example: ShapeBM

- Weight sharing and sparse connections
- Each layer models a different part of the data
Example: ShapeBM

- Used DBM-like structure to learn a shape prior for segmentation
- Good showcase of generative completion abilities
Completing unknown data

- Repeatedly sample from model
- For any visible layer sample, clamp known locations to the known values
Extensions

- Gaussian RBM for image data
- Convolutional RBM
Accelerating Training

- Most operations are implemented as large matrix multiplications
- Use optimized BLAS libraries
 - Matlab, OpenBLAS, IntelMKL
- GPUs can accelerate most operations
 - CUDA
 - Matlab Parallel Computing Toolbox
 - Theano
Example Matlab code
Additional Resources

- http://goo.gl/UWtRWT
- Neural Networks, deep learning, and sparse coding course videos from Hugo Larochelle
- A Practical Guide to Training RBMs