Deep Learning
Deterministic Neural Networks
Zhirong Wu
Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.
Neural Net Events

founded by Warren McCulloch and Walter Pitts

back propagation by Rumelhart and Hinton

1943

Microsoft deep networks in speech recognition

1986

ImageNet classification over millions of images

1969

criticism by Minsky in his book “Perceptron” by Hinton

2006

deep belief networks by Hinton

2011

Google CAT

2012

Facebook established its deep learning lab

2013
Neural Networks

basic building blocks

\[z = \sum_i x_i w_i + b, \quad y = f(z) \]

where \(f \) is an activation function:

\[f(z) = \sigma(z) = \frac{1}{1 + e^{x(-z)}} \]

- sigmoid is bounded between 0 and 1
- monotonically increasing
- differentiation: \(\sigma'(z) = \sigma(z) \ast (1 - \sigma(z)) \)
Neural Networks

basic building blocks

\[z = \sum_i x_i w_i + b, \quad y = f(z) \]

where \(f \) is an activation function:

\[f(z) = \sigma(z) = \frac{1}{1 + exp(-z)} \]

- sigmoid is bounded between 0 and 1
- monotonically increasing
- differentiation: \(\sigma'(z) = \sigma(z) \times (1 - \sigma(z)) \)
Neural Networks

representation

feed-forward

for each neuron in the next layer:

\[
z_i^{(2)} = \sum_{j=1}^{n} w_{ij}^{(1)} x_j + b_i^{(1)}, \quad a_i^{(2)} = f(z_i^{(2)})
\]

compactly:

\[
z^{(2)} = W^{(1)} x + b^{(1)}, \quad a^{(2)} = f(z^{(2)})
\]

\[
z^{(3)} = W^{(2)} x + b^{(2)}, \quad a^{(3)} = f(z^{(3)})
\]

globally models a function:

\[
\hat{y} = h_{W, b}(x)
\]

where \(W\) and \(b\) are model parameters
Neural Networks

recall: gradient descent

$$min : \quad F(x)$$

if the multivariable function $F(x)$ is defined and differentiable in the neighborhood of a point α, then $F(x)$ decreases fastest if one goes from α in the direction of the negative gradient $-\nabla F(\alpha)$

gradient descent ensures that for sufficiently small γ

$$b = a - \gamma \nabla F(\alpha)$$

we have $F(b) < F(a)$
Neural Networks

supervised learning

• define a loss function over the true label and the model prediction, such as squared error / cross entropy.

• use gradient descent to optimize the model parameter.

\[w^{(l)}_{ij} := w^{(l)}_{ij} - \alpha \frac{\partial}{\partial w^{(l)}_{ij}} J(W, b; x, y) \]

\[b^{(l)}_{i} := b^{(l)}_{i} - \alpha \frac{\partial}{\partial b^{(l)}_{i}} J(W, b; x, y) \]

back propagation

learning rate
Neural Networks

Backpropagation is just the chain rule to derive gradients.

\[J(W, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} ||h_{W,b}(x^{(i)}) - y^{(i)}||^2 \]

Just one sample for illustration:

\[J(W, b) = \frac{1}{2} ||h(x) - y||^2 \]

Chain rule:

\[y = f(g(x)), \quad y' = f'(g(x)) \cdot g'(x) \]

Intuition:

\[x \quad \rightarrow \quad g(x) \quad \rightarrow \quad f(g(x)) \]

\[g'(x) \quad \rightarrow \quad f'(g(x)) \]
Neural Networks

\[h(x) : \frac{\partial J}{\partial h(x)} = h(x) - y \]

\[z^{(3)} : h(x) = f(z^{(3)}) \]

\[\frac{\partial J}{\partial z^{(3)}} = \frac{\partial J}{\partial h(x)} \cdot f'(z^{(3)}) \]

\[W^{(2)}, b^{(2)} : \quad z^{(3)} = W^{(2)}a^{(2)} + b^{(2)} \]

\[\frac{\partial J}{\partial w^{(2)}_j} = \frac{\partial J}{\partial z^{(3)}} \cdot a_j^{(2)} \]

\[\frac{\partial J}{\partial b^{(2)}} = \frac{\partial J}{\partial z^{(3)}} \cdot 1 \]
Neural Networks

\[a_j^{(2)} : \quad z^{(3)} = W^{(2)} a^{(2)} + b^{(2)} \]

\[\frac{\partial J}{\partial a_j^{(2)}} = \frac{\partial J}{\partial z^{(3)}} \cdot w_j^{(2)} \]

\[z_j^{(2)} : \quad a_j^{(2)} = f(z_j^{(2)}) \]

\[\frac{\partial J}{\partial z_j^{(2)}} = \frac{\partial J}{\partial a_j^{(2)}} \cdot f'(z_j^{(2)}) \]
Neural Networks

$$W^{(1)}, b^{(1)} : \quad z^{(2)} = W^{(1)}x + b^{(1)}$$

$$\frac{\partial J}{\partial w_{ij}^{(1)}} = \frac{\partial J}{\partial z_i^{(2)}} \cdot x_j$$

$$\frac{\partial J}{\partial b_i^{(1)}} = \frac{\partial J}{\partial z_i^{(2)}} \cdot 1$$
Neural Networks

learning algorithm for neural nets

initialize: \(W = 0.01 \times N(0, 1); b = 0 \)

for iter = 1 : epochs

 feed_forward(); // computing activations for all layers

 back_prop(); // compute the partial derivatives respect to \(W, b \)

 \(W := W - \alpha \cdot \Delta W; b := b - \alpha \cdot \Delta b // update \)

end
Neural Networks

toy example: (linear identity activation function)

\[
\begin{align*}
W^{(1)} &= \begin{bmatrix} 0.1 & 0.3 & 0 \\ -0.2 & 0.5 & 0.2 \end{bmatrix} & b^{(1)} &= \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix} \\
W^{(2)} &= [-1, 1] & b^{(2)} &= [0]
\end{align*}
\]
Neural Networks

toy example: (linear identity activation function)

\[W^{(1)} = \begin{bmatrix} 0.1 & 0.3 & 0 \\ -0.2 & 0.5 & 0.2 \end{bmatrix} \quad b^{(1)} = \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix} \]

\[W^{(2)} = [-1, 1] \quad b^{(2)} = [0] \]
Neural Networks

batch gradient descent & stochastic gradient descent

recall

minimize \(J(W, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} ||h_{W,b}(x^{(i)}) - y^{(i)}||^2 \)

we have to compute and average all the training sample gradients in order to perform one gradient descent step

too costly!
each sample has already provide some information where to go

use a mini-batch instead of all samples to evaluate one gradient step

e.x. 100 training data, 5 mini-batch, each 20 data

shuffle the data
Neural Networks

stochastic gradient descent algorithm

initialize: \(W = 0.01 \ast N(0, 1); b = 0 \)

for iter = 1 : epochs

 shuffle the data

 for batch = 1 : num_batch

 feed_forward(); // computing activations for all layers

 back_prop(); // compute the partial derivatives respect to \(W, b \)

 \(W := W - \alpha \cdot \Delta W; b := b - \alpha \cdot \Delta b \) // update

 end

end
Neural Networks

stochastic gradient descent practical issues:

1. how to initialize W, b?
 small values. e.x. W to be 0.01*N(0,1), b to be 0

2. how to set the learning rate?
 set the learning rate so that:
 \[\alpha * \frac{\partial}{\partial w} \approx 10^{-3} \cdot w \]
 linearly decreasing when necessary

3. how to set the size of mini-batch?
 cannot be too big, 20 - 50 is fine

 choose larger learning rate for the front layers.
Neural Networks

more sophisticated way to update parameters

\[\theta := \theta - \alpha \cdot \Delta \theta \]

weight decay:

\[\hat{J}(\theta) = J(\theta) + \frac{\lambda}{2} ||\theta||^2 = \frac{1}{2} ||h(x) - y||^2 + \frac{\lambda}{2} ||\theta||^2 \]

\[\Delta \theta = \frac{\partial (J)}{\partial \theta} + \lambda \theta \]

momentum:

\[\Delta \theta_{new} = m \cdot \Delta \theta_{old} + (1 - m) \cdot \Delta \theta \]

brings robustness to stochastic gradient descent

\[\lambda \approx 10^{-4} - 10^{-6} \]

\[m \approx 0.9 \]
Neural Networks

softmax classifier

label is in 1-k coding scheme

\[\hat{y}_i = \frac{\exp(w_i x)}{\sum_{j=1}^k \exp(w_j x)} = p(y_i = 1) \]

cost function:

\[J(W) = -\frac{1}{m} \left[\sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \]

cross entropy: maximum likelihood of bernoulli distribution

derivatives: (back prop)

\[\frac{\partial}{\partial w_j} J(W) = -\frac{1}{m} \sum_{i=1}^m \left[x^{(i)} (y_j^{(i)} - \hat{y}_j^{(i)}) \right] \]
Convolutional Neural Networks

why convolutional?

• for images, too many model parameters
• locality and stationarity of features
Convolutional Neural Networks

detection layers

convolution

\[Z_i = \sigma(W_i \ast X) \]
Convolutional Neural Networks

pooling:
- reduce the size of representations
- allow small translation invariance.

common pooling techniques:
max pooling, average pooling
Convolutional Neural Networks

convolution network is just a combination of convolution layers, pooling layers and fully connected layers

(figures from LeNet tutorial, http://deeplearning.net/tutorial/lenet.html)
Convolutional Neural Networks

practical example: ImageNet Classification

architecture:
8 layers in total
first 5 are convolutional
last 3 are fully connected
max-pooling in the 1, 2, 5th layer

softmax classifier

(stride)

(figures from Krizhevsky, Alex et al 2012)
Convolutional Neural Networks

details:

activation function: ReLU \[f(z) = \max(0, z) \]

local normal contrast:
\[b_{x,y}^i = \frac{a_{x,y}^i}{k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2} \]
normalize at the same spatial location over different feature maps

overlapping pooling: pooling size 3 with stride 2
Convolutional Neural Networks

reduce over-fitting:
training 1.2 million images for 60 million parameters

data augmentation:

• extracting random 224*224 patches from the 256*256 images and horizontal reflections. This results in an increase by a factor of 2048.

• altering the intensities of the RGB channels, object identity is invariant to the illumination. Add each RGB pixel in each training image by

\[
[p_1, p_2, p_3] [\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T
\]

where \(p_i \) are the 3 - 1 eigenvectors and \(\lambda_i \) are eigen values of 3 - 3 covariance matrix of RGB pixels, \(\alpha_i \) are random numbers
Convolutional Neural Networks

reduce over-fitting:

dropout:

an efficient way to combining different model predictions.

- for each forward pass and each back propagation, randomly defunctions every neuron with probability 0.5. (setting the activation to zero)
- testing: half all the weights, and use all of the neurons to predict
Convolutional Neural Networks

practical implementation tips:
(do not contain activation functions)

feed forward:

convolution:
\[
\text{output} = \text{conv2}(\text{input}, \text{rot90}(\text{kernel}), 'valid');
\]

max & average pooling:
\[
\begin{align*}
\text{patches} & = \text{im2col}(\text{input}, [\text{pool_size}, \text{pool_size}]); \\
\text{patches} & = \text{patches}(:, 1: \text{pool_size}: \text{end}); \\
\text{output} & = \text{mean}(\text{patches}); \\
\text{output} & = \text{max}(\text{patches}); \\
\text{output} & = \text{reshape}(\text{output}, \text{layer_size});
\end{align*}
\]
Convolutional Neural Networks

practical implementation tips:
(do not contain activation functions)

back prop:

convolution:

max & average pooling:

```plaintext
grd_pre_layer = conv2(grd_latter_layer, kernel, 'full');
grd_w = conv2(pre_layer_activation, rot90(grd_latter_layer), 'valid');

grd_unpooled = kron( grd_pooled, ones(scale) ) ./ scale ^ 2;
%max_index
grd_unpooled(max_index) = grd_pooled;
```
Convolutional Neural Networks

filter visualization:

first layer: what pattern is most likely to turn on this neuron?

\[
\begin{align*}
\max & \quad w \cdot x \\
\text{s.t.} & \quad \|x\| = 1 \\
\end{align*}
\]

\[
x = \frac{w}{\|w\|}
\]
Convolutional Neural Networks

filter visualization:

higher layers: difficult, a linear combination of previous layers.

\[f_1 \cdot W_1^{(2)} + f_2 \cdot W_2^{(2)} \]
Convolutional Neural Networks

filter visualization:

(filters learned)

(Matthew D. Zeiler et al 2013)
Convolutional Neural Networks

filter visualization:

(Honglak Lee et al 2009)
Convolutional Neural Networks

online web demo:
Convolutional Neural Networks

matlab code demo