COS 429 PS3: Stitching a Panorama

Due November 4th
Goal

• Find key features in images and correspondences between images
• Use RANSAC to find the best correspondences
• Map one image plane to another to create a panoramic image
Problem 1: Preprocessing

• Most feature descriptors only work with grayscale images

• Task:
 – Convert color images to grayscale
 • You can use Matlab function `rgb2gray`
 – Copy the lines of code you wrote in the report
Problem 2: Detecting Key Points

• Want to detect the key points in both images and find corresponding key points between both images

• Task:
 – Find SURF features in both images
 • You can use Matlab function `detectSURFFeatures`
 – Copy the lines of code you wrote in the report
Problem 3: Extracting Descriptors

• Extract feature descriptors at each key point detected in Problem 2

• Task:
 – Extract feature for each key point
 • You can use Matlab function `extractFeatures`
 – Visualize the descriptors and include in the report
 – Copy the lines of code you wrote in the report
Problem 4: Matching Features

• Task:
 – Find matching features between both images
 • You can use the Matlab function `matchFeatures`
 – Visualize the matching results and include a figure in your report
 – Copy the lines of code you wrote in the report
Problem 5: RANSAC to Estimate Homography

• We want to exclude outlier matches and compute a homography to map one image plane to the other

• Task:
 – Use RANSAC to estimate a homography
 – You can use Matlab function \texttt{estimateGeometricTransform}
 – Visualize the matching results and include \texttt{in your report}
 – Copy the lines of code you wrote \texttt{in the report}
Problem 6: Stitching Panorama

• Need to warp images to make a panorama
 – Map pixels in the warped image to pixels in the input image to avoid holes in the final image
 – Code provided to warp the first image

• Task:
 – Write similar code to warp and paste the second image to produce a final panoramic image
 • You can use MATLAB functions `imwarp`, `vision.AlphaBlender`, and `step` to overlay the second image on the first
 – Add the resulting panorama to your report
 – Copy the lines of code you wrote in the report
• Notes:
 – Don’t worry about blending (visible seams)
 – Results will vary since RANSAC is a randomized algorithm
Problem 7: Take Your Own Pictures for Princeton Campus

- Task:
 - Take two pictures of Princeton’s campus, run the code to stitch them together
 - Include the original two photos and the final panorama in your report
Extra Credit

• Many possible ways to get extra credit:
 – Try alpha blending to merge the overlapping image regions to get rid of boundary
 – Use Graph Cut to find an optimal seam between the two images
 • Use Poisson blending to blend the two images
 – Handle more than 2 images
 – Combine photographs into a 360° x 180° panorama (equirectangular projection)
 – Convert the panorama into a stereographic projection
 – Reconstruct the 3D geometry of the panorama
What to Submit:

• One PDF file report
• One ZIP file containing all the source code, and a “ps3.m” file that takes no parameters as input and runs directly in Matlab to generate the results in the pdf report